International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article | International Journal of Innovative Approaches in Agricultural Research 2020, Vol. 4(4) 414-422

The Effect of Potassium Application on Sugar Beet (Beta vulgaris L.) under Salt Stress

Gizem Aksu & Hamit Altay

pp. 414 - 422   |  DOI: https://doi.org/10.29329/ijiaar.2020.320.3

Published online: December 25, 2020  |   Number of Views: 11  |  Number of Download: 44


Abstract

Salt stress is an important type of abiotic stress that limits vegetative production in the world, particularly in arid and semi-arid climatic areas. The aim of this study is to mitigate salt stress damage in the sugar beet plant, which is an important part of crop production, with potassium application. An experiment was designed according to a design of random blocks with 4 different doses (10, 20, 40, 80 mg kg-1 K) of potassium and 3 different salt levels (0, 100, 150 mM NaCl) and 3 replicates. Leaf length, leaf width, fresh weight, malondialdehyde (MDA) content, membrane damage, relative water content was determined after harvest. The data obtained from the experiment were evaluated by one-way analysis of variance (One-Way ANOVA). According to the results of variance analysis, leaf width, leaf length, fresh weight, MDA content, membrane damage, relative water content were found to be statistically significant in salt x potassium interaction. Due to the positive effects of potassium on the parameters known to increase the plants' stress tolerance, it is thought that it may be beneficial in reducing the salt stress in order to make the sugar beet less affected by salt stress.

Keywords: Potassium, Salt Stress, Sugar Beet


How to Cite this Article?

APA 6th edition
Aksu, G. & Altay, H. (2020). The Effect of Potassium Application on Sugar Beet (Beta vulgaris L.) under Salt Stress . International Journal of Innovative Approaches in Agricultural Research, 4(4), 414-422. doi: 10.29329/ijiaar.2020.320.3

Harvard
Aksu, G. and Altay, H. (2020). The Effect of Potassium Application on Sugar Beet (Beta vulgaris L.) under Salt Stress . International Journal of Innovative Approaches in Agricultural Research, 4(4), pp. 414-422.

Chicago 16th edition
Aksu, Gizem and Hamit Altay (2020). "The Effect of Potassium Application on Sugar Beet (Beta vulgaris L.) under Salt Stress ". International Journal of Innovative Approaches in Agricultural Research 4 (4):414-422. doi:10.29329/ijiaar.2020.320.3.

References
  1. Aksu, G. and Altay, H. 2020. The Effects of Potassium Applications on Drought Stress in Sugar Beet. Sugar Tech. 1-11. 10.1007/s12355-020-00851-w.  [Google Scholar]
  2. Ashraf, M., K. Aasiya and A. Khanum. 1997. Relationship between ion accumulation and growth in two spring wheat lines differing in salt tolerance at different growth stages. Journal of Agronomy and Crop Science 178: 39-51. [Google Scholar]
  3. Asraf, M. 2004. Some ımportant physiological selection criteria for salt tolerance in plants, Flora,199:361-376. [Google Scholar]
  4. Barrs, H.D., Weatherley, P.E., 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15(3): 413-428. [Google Scholar]
  5. Bellitürk K., 2010. Bitki beslemede potasyumun önemi. Hasad bitkisel üretim, 26-304:84-86. [Google Scholar]
  6. Chartzoulakis, K., Klapaki, G., 2000. Response of Two Greenhouse Pepper Hybrids to NaCl Salinity During Different Growth Stages. Scientia Horticulture, 86: 247-260. [Google Scholar]
  7. Daşgan, H.Y., Aktaş, H., Abak, K., Çakmak, İ., 2002. Determination of Screening Techniques to Salinity Tolerance in Tomatoes and Investigation of Genotype Responses. Plant Science, 163: 695-703. [Google Scholar]
  8. Dlugokecka, E. and A. Kacperska-palacz. 1978. Re-examination of electrical conductivity method for estimation of drought ınjuries. Biologia Plantarum, 20 (4):262–267. [Google Scholar]
  9. Dolatabadian, A., Sanavy, S.A., Chashmi, N.A., 2008. The effects of foliar application of ascorbic acid (vitamin C) on antioxidant enzymes activities, lipid peroxidation and proline accumulation of canola (Brassica napus L.) under conditions of salt stress. J. Agron. Crop Sci. 194: 206-213. [Google Scholar]
  10. Ekmekçi, E., Apan, M., Kara, T. 2005. Tuzluluğun bitki gelişimine etkisi, OMÜ Zir. Fak. Dergisi, 2005,20(3):118-125 [Google Scholar]
  11. Er, C. ve S. Uranbey. 1998. Nişasta Şeker Bitkileri ve Islahı. Ankara Üniversitesi Ziraat fakültesi Yayınları.  [Google Scholar]
  12. Eraslan, F., İnal, A., Güneş, A., Erdal, İ.,Coşkan, A. 2010. Türkiye’de kimyasal gübre üretim ve tüketim durumu, sorunlar, çözüm önerileri ve yenilikler. TMMOB Ziraat Mühendisleri Odası, Ziraat Mühendisliği VII. Teknik Kongresi. 11-15 Ocak 2010, Ankara. [Google Scholar]
  13. Ghanem M. E., Ghars M. A., Frettinger P., Pérez-Alfocea F., Lutts S., Wathelet J., Jardin P. J. ve Fauconnier M. L., 2012. Organ-Dependent Oxylipin Signature in Leaves and Roots of Salinized Tomato Plants (Solanum lycopersicum). Journal of Plant Physiology, 169 (11): 1090-1101. [Google Scholar]
  14. Ghoulam, C., Foursy, A., Fores, K., 2002. Effects of salt stres on growth inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ. Exp. Bot. 47: 39-50. [Google Scholar]
  15. Hirpara, K. D., Ramolıya, P. J., Pate, A. D., and Pandey, A. N., 2005. Effect of Stalinization of soil on growth and macro and micro nutrient accumulation in seedlings of Butea monosperma (Fabaceae) Anales De Biologia, 27: 3-14. [Google Scholar]
  16. Hsiao, T. C. and A. Läuchli. 1986 Role of Potassium in PlantWater Relations. In: Advances in Plant Nutrition, Tinker, B. and Läuchli, A. (eds.), Vol. 2. Praeger Scientific, New York, pp. 281-312. [Google Scholar]
  17. Huang, Y., Bie, Z., Liu, Z., Zhen, A., Wang, W., 2009. Protective Role of Proline Against Salt Stress is Partially Related to the Improvement of Water Status and Peroxidase Enzyme Activity in Cucumber. Soil Science and Plant Nutrition, 55 (5): 698-704. [Google Scholar]
  18. Katerji, N., Van, Hoorn, J.W., Hamdy, A., Mastrorilli, M. and Mou Karzel, E., 1997. Osmotic adjustment of sugarbeets in response to soil salinity and its influence on stomatal conductance, growth and yield. Agricul. Water Manage., 34, 57–69. [Google Scholar]
  19. Kaya, C., Higgs, D., 2002. Calcium nitrate as a remedy for salt-stressed cucumber plants. Journal of Plant Nutrition, 25(4): 861-871. [Google Scholar]
  20. Kaya, C., Higgs, D., 2003. Supplementary KNO3 improves salt tolerance in bell pepper plants. Journal of Plant Nutrition, 26(7): 1367-1382. [Google Scholar]
  21. Kuşvuran, S., Yaşar, F., Abak, K., and Ellialtıoğlu, S., 2008. Tuz stresi altında yetistirilen tuza tolerant ve duyarlı Cucumis sp.’nin bazı genotiplerinde lipid peroksidasyonu, klorofil ve iyon miktarlarında meydana gelen değişimler. Yüzüncü Yıl Üniversitesi, Ziraat Fakültesi, Tarım Bilimleri Dergisi (J. Agric. Sci.), 18 (1): 13-20.  [Google Scholar]
  22. Kuşvuran, Ş., Ellıaltıoğlu, Ş., Yaşar, F., Abak, K., 2007c. Effects of Salt Stress on Ion Accumulations and Some of the Antioxidant Enzymes Activities in Melon (Cucumis melo L.), International Journal of Food, Agriculture and Environment, 2(5): 351-354. [Google Scholar]
  23. Lutts, S., Kinet, J.M., Bouharmont, J., 1996. NaCl-induced senescence in leaves of rice cultivars differing in salinity resistance. Ann. Bot. 78: 389-398. [Google Scholar]
  24. Munns, R., 2002. Comparative Physiology of Salt and Water Stres. Plant Cell Environ. 25: 239-250. [Google Scholar]
  25. Othman, Y., Al-karakı, G., Al-tawaha, A. R., Al-horanı, A., 2006. Variation in germination and ion uptake in barley genotypes under salinity conditions. World J Agric Sci 2:11–15. [Google Scholar]
  26. Perez-Lopez, U., Robredo, A., Lacuesta, M., Mena-Petite, A., Munoz-Rueda, A., 2008. The Impact of Salt Stress on the Water Status of Barley Plants is Partially Mitigated by Elevated CO2. Environmental and Experimental Botany, 66 (3): 463-470. [Google Scholar]
  27. Sairam, R.K. and G.C. Srivastava. 2002. Changes in antioxidant activity in subcellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Science 162:897–904. [Google Scholar]
  28. SHannon, M.C., Grieve, C.M., 1999. Tolerance of Vegetable Crops to Salinity.Scientia Hort. 78: 5-38. [Google Scholar]
  29. Sherif M.A., T. R. El-Beshbeshy and C. Richter. 1998. Response of some Egyptian varieties of wheat (Triticum aestivum L.) to salt stress through potassium application. Bulletin of Faculty of Agriculture, University of Cairo 49: 129-151. [Google Scholar]
  30. Shirazi M.U., M. Y. Ashraf, M. A. Khan and M. H. Naqvi. 2005. Potassium induced salinity tolerance in wheat (Triticum aestivum L.). Int. J. Environ. Sci. Tech. 2: 233-236 [Google Scholar]
  31. Shrivastava P., Kumar R. 2015. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation Saudi J. Biol. Sci., 22 (2), pp. 123-131 [Google Scholar]
  32. Srivastava, T.P., Gupta, S.C., Lal, P., Muralia, P.N. and Kumar, A., 1998. Effect of Salt Stress on Physiological and Biochem. Parameters of Wheat. Ann. Arid Zone., 27: 197-204. [Google Scholar]
  33. Tuna A.L., Yıldıztekin M., Köşkeroğlu S., Yokas İ., 2017. Tuz Etkisi Altındaki Domates Bitkisinde Potasyum ve Kalsiyum Antioksidatif Sistemi Etkiler mi? Turk J Agric Res 2017, 4(1): 71-78. [Google Scholar]
  34. Uygan, D., Hakgören, F. ve Büyüktaş, D. (2006) Eskişehir sulama şebekesinde drenaj sularının kirlenme durumu ve sulamada kullanma olanaklarının belirlenmesi, Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 19(1):47-58. [Google Scholar]
  35. Wei, G.P., Yang, L.F., Zhu, Y.L., Chen, G., 2009. Changes in Oxidative Damage, Antioxidant Enzyme Activites and Polyamine Contents in Leaves of Grafted and Non- Grafted Eggplant Seedling under Stress by Excess of Calcium Nitrate. Scientia Horticulturae, 12: 443-451. [Google Scholar]
  36. Yakıt, S., Tuna, A.L., 2006. Tuz stresi altındaki mısır bitkisinde (Zea mays L. ) stres parametreleri üzerine Ca, Mg ve K’nın etkileri. Akdeniz Üniv. Der. 19(1): 59-67. [Google Scholar]
  37. Yaşar, F., 2003. Tuz Stresi Altındaki Patlıcan Genotiplerinde Bazı Antioksidant Enzim Aktivitelerinin in vitro ve in vivo Olarak İncelenmesi. (Doctoral thesis), Yüzüncü Yıl University Graduate School of Natural and Applied Science, Van, 138 s. [Google Scholar]
  38. Yaşar, F., Ellialtıoğlu, Ş., Yıldız, K., 2008a. Effect of Salt Stress on Antioxidant Defense Systems, Lipid Peroxidation, and Chlorophyll Content in Green Bean. Russian Journal of Plant Physiology, 2008, 55 (6): 782–786. [Google Scholar]
  39. Yu S., Wang W. ve Wang B. 2012. Recent progress of salinity tolerance research in plants,Russian Journal of Genetics, 48 (5): 497-505. [Google Scholar]
  40. Zengin, M., Gökmen, F., Yazıcı, M. A. ve Gezgin, S. (2009). Effects of potassium, magnesium and sulphur containing fertilizers on yield and quality of sugar beets (Beta vulgaris L.). Turkish J. of Agric. and Forestry, 33, 495-502. [Google Scholar]
  41. Zhu, J., Bie, Z., Li, Y., 2008. Physiological and Growth Responses of Two Different Salt-Sensitive Cucumber Cultivars to NaCl Stress. Soil Science and Plant Nutrition, 54: 400-407. [Google Scholar]