International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Review article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2020, Vol. 4(4) 505-523

In Vitro Plant Tissue Culture: Means for Production of Passiflora Species

Boboc Oros Paula, Timea Hitter Buru, Corina Cătană & Maria Cantor

pp. 505 - 523   |  DOI:

Published online: December 25, 2020  |   Number of Views: 161  |  Number of Download: 542


Passiflora genus includes over 600 species native to tropical and subtropical areas of America, appreciated for the production of fruit and medicinal value. Their ornamental potential is especially appreciated in North America and in Europe. With the expansion of the flower trade and the use of secondary metabolites in the pharmaceutical industry, a need for the constant monopolization of new technologies and alternative in vitro techniques that allow to obtain a uniform, high quality material free of pests and diseases occurs. Passiflora’s tissue cultures began to be studied in 1966, raising more and more interest of researchers worldwide. Depending on the source and type of the explant, plant growth regulators, and the used genotype, direct and indirect organogenesis are the main regeneration pathways for Passiflora. The latest approaches regarding the choice of explant and its source, the plant material surface sterilization and the specific requirements of each micropropagation stage are presented within our review. To this genus, the reduced gas exchange of in vitro growing of seedlings has been shown as the main cause of lack of success. In this regard, for regeneration and obtained improvements in morphogenesis, different protocols have been developed by using inhibitors of ethylene. In recent years, studies suggest that via somatic embryogenesis, starting from mature and immature zygotic embryos, regenerated plants that have maintained their mother plant ploidy can be successfully obtained. This confirms the callus cultures as main path to obtain in vitro regenerated Passiflora plants.

Keywords: Passiflora, regeneration, organogenesis, somatic embryogenesis

How to Cite this Article

APA 6th edition
Paula, B.O., Buru, T.H., Cătană, C. & Cantor, M. (2020). In Vitro Plant Tissue Culture: Means for Production of Passiflora Species . International Journal of Innovative Approaches in Agricultural Research, 4(4), 505-523. doi: 10.29329/ijiaar.2020.320.12

Paula, B., Buru, T., Cătană, C. and Cantor, M. (2020). In Vitro Plant Tissue Culture: Means for Production of Passiflora Species . International Journal of Innovative Approaches in Agricultural Research, 4(4), pp. 505-523.

Chicago 16th edition
Paula, Boboc Oros, Timea Hitter Buru, Corina Cătană and Maria Cantor (2020). "In Vitro Plant Tissue Culture: Means for Production of Passiflora Species ". International Journal of Innovative Approaches in Agricultural Research 4 (4):505-523. doi:10.29329/ijiaar.2020.320.12.

  1. Abreu, P. P., Souza, M. M., Santos, E. A., Pires, M. V., Pires, M. M., & De Almeida, A. A. F. (2009). Passion flower hybrids and their use in the ornamental plant market: Perspectives for sustainable development with emphasis on Brazil. Euphytica, 166(3), 307–315. [Google Scholar] [Crossref] 
  2. Alexandre, R. S., Júnior, A. W., & Rondinelli, J. (2004). Germinação de sementes de genótipos de maracujazeiro. 1, 1239–1245. [Google Scholar]
  3. Antognoni, F., Zheng, S., Pagnucco, C., Baraldi, R., Poli, F., & Biondi, S. (2007). Induction of flavonoid production by UV-B radiation in Passiflora quadrangularis callus cultures. Fitoterapia, 78(5), 345–352. [Google Scholar] [Crossref] 
  4. Antoniazzi C. A., R. B. deFaria, P. P. deCarvalho, A. I. Mikovski, I. F. deCarvalho, E. M. de Matos, A. C. Reis, L. F. Viccini, D. L. Paim Pinto, D. I. Rocha, W. Camp, (2018). In vitro regeneration of triploid plants from mature endosperm culture of commercial passionfruit (Passiflora edulis Sims). Scientia Horticulturae, 238, 408–415. [Google Scholar]
  5. Arogundade, O., Oyekanmi, J., Oresanya, A., Ogunsanya, P., Akinyemi, S. O. S., & Lava Kumar, P. (2018). First report of passion fruit woodiness virus associated with passion fruit woodiness disease of passion fruit in Nigeria. Plant Disease, 102(6), 1181. [Google Scholar] [Crossref] 
  6. Becerra, D. C., Forero, A. P., & Góngora, G. A. (2004). Age and physiological condition of donor plants affect in vitro morphogenesis in leaf explants of Passiflora edulis f. flavicarpa. Plant Cell, Tissue and Organ Culture, 79(1), 87–90. [Google Scholar] [Crossref] 
  7. Bendini, A., Cerretani, L., Pizzolante, L., Toschi, T. G., Guzzo, F., Ceoldo, S., Marconi, A. M., Andreetta, F., & Levi, M. (2006). Phenol content related to antioxidant and antimicrobial activities of Passiflora spp. extracts. European Food Research and Technology, 223(1), 102–109. [Google Scholar] [Crossref] 
  8. Benson, E. E. (2000). Do free radicals have a role in plant tissue culture recalcitrance? In Vitro Cellular and Developmental Biology - Plant, 36(3), 163–170. [Google Scholar] [Crossref] 
  9. Boboc Oros P., M. Cantor, (2017). The Passiflora genus - New perspectives in flower production in controlled environment. Journal of Horticulture, Forestry and Biotechnology, 21(2), 77-81. [Google Scholar]
  10. Boboc Oros P., M. Cantor, T. Hitter, T. Gocan (2017). Passiflora – source of sanogenic compounds, prospects for medicine and current uses. Lucrări Științifice Seria Horticultură, 60 (1/2). [Google Scholar]
  11. Boboc Oros P., E. Buta, I. Crișan, M. Cantor (2020). A survey of knowledge and use on Passiflora species in Cluj-Napoca, Romania. BulletinUSAVM Horticulture, 77(1). [Google Scholar]
  12. Monteiro, B. A., A. C., Gerson, Nakazawa, T., Madalena, B., Mendes, J., Pinheiro, A., & Rodriguez, M. (2000). In vitro regeneration of Passiflora suberosa from leaf discs. Scientia Agricola, 57(3), 571–573. [Google Scholar]
  13. Boro, M. C., Beriam, L. O. S., & Guzzo, S. D. (2011). Induced resistance against Xanthomonas axonopodis pv. Passiforae in passion fruit plants. Tropical Plant Pathology, 36(2), 74–80. [Google Scholar] [Crossref] 
  14. Cantor, M., I. Pop. (2008). Floricultură – Bază de date, Todesco, Cluj-Napoca. [Google Scholar]
  15. Carvalho, M. A. de F., Paiva, R., Herrera, R. C., Alves, E., de Castro, E. M., de Oliveira Paiva, P. D., & Vargas, D. P. (2015). Indução, análises morfológicas e ultraestruturais de calos de maracujazeiro nativo. Revista Ceres, 62(4), 340–346. [Google Scholar] [Crossref] 
  16. Cătană, C. (2005). Biotehnoligii celulare. Risoprint., 85-125. [Google Scholar]
  17. Da Gloria, B. A., Vieira, M. L. C., & Dornelas, M. C. (1999). Anatomical studies of in vitro organogenesis induced in leaf-derived explants of passionfruit. Pesquisa Agropecuaria Brasileira, 34(11), 2007–2013. [Google Scholar] [Crossref] 
  18. da Silva, C. V., de Oliveira, L. S., Loriato, V. A. P., da Silva, L. C., de Campos, J. M. S., Viccini, L. F., de Oliveira, E. J., & Otoni, W. C. (2011). Organogenesis from root explants of commercial populations of Passiflora edulis Sims and a wild passionfruit species, P. cincinnata Masters. Plant Cell, Tissue and Organ Culture, 107(3), 407–416. [Google Scholar] [Crossref] 
  19. da Silva, M. L., Pinto, D. L. P., Guerra, M. P., Floh, E. I. S., Bruckner, C. H., & Otoni, W. C. (2009). A novel regeneration system for a wild passion fruit species (Passiflora cincinnata Mast.) based on somatic embryogenesis from mature zygotic embryos. Plant Cell, Tissue and Organ Culture, 99(1), 47–54. [Google Scholar] [Crossref] 
  20. de Carvalho, P. P., Antoniazzi, C. A., da Silva, N. T., Mikosvki, A. I., de Carvalho, I. F., & Carvalho, M. L. da S. (2017). Regeneração in vitro de Passiflora miniata Mast. Ornamental Horticulture, 23(1), 88–95. [Google Scholar] [Crossref] 
  21. de Faria, R. B., de Carvalho, I. F., Rossi, A. A. B., de Matos, E. M., Rocha, D. I., Paim Pinto, D. L., Otoni, W. C., & da Silva, M. L. (2018a). High responsiveness in de novo shoot organogenesis induction of Passiflora cristalina (Passifloraceae), a wild Amazonian passion fruit species. In Vitro Cellular and Developmental Biology - Plant, 54(2), 166–174. [Google Scholar] [Crossref] 
  22. de Faria, R. B., de Carvalho, I. F., Rossi, A. A. B., de Matos, E. M., Rocha, D. I., Paim Pinto, D. L., Otoni, W. C., & da Silva, M. L. (2018b). High responsiveness in de novo shoot organogenesis induction of Passiflora cristalina (Passifloraceae), a wild Amazonian passion fruit species. In Vitro Cellular and Developmental Biology - Plant, 54(2), 166–174. [Google Scholar] [Crossref] 
  23. de Figueiredo Carvalho, M. A., Paiva, R., Alves, E., Nogueira, R. C., Stein, V. C., de Castro, E. M., de Oliveira Paiva, P. D., & Vargas, D. P. (2013). Morphogenetic potential of native passion fruit (Passiflora gibertii N. E. Brown.) calli. Revista Brasileira de Botanica, 36(2), 141–151. [Google Scholar] [Crossref] 
  24. Dhawan, K., Dhawan, S., & Sharma, A. (2004). Passiflora: A review update. Journal of Ethnopharmacology, 94(1), 1–23. [Google Scholar] [Crossref] 
  25. Dias, L. L. C., Ribeiro, D. M., Catarina, C. S., Barros, R. S., Floh, E. I. S., & Otoni, W. C. (2010). Ethylene and polyamine interactions in morphogenesis of Passiflora cincinnata: Effects of ethylene biosynthesis and action modulators, as well as ethylene scavengers. Plant Growth Regulation, 62(1), 9–19. [Google Scholar] [Crossref] 
  26. Dornelas, M. C., & Carneiro Vieira, M. L. (1994). Tissue culture studies on species of Passiflora. Plant Cell, Tissue and Organ Culture, 36(2), 211–217. [Google Scholar] [Crossref] 
  27. Drew, R. A. (1991). In vitro culture of adult and juvenile bud explants of Passiflora species. Plant Cell, Tissue and Organ Culture, 26(1), 23–27. [Google Scholar] [Crossref] 
  28. Espinosa, C. A., César, L., Garza, A. P., & García, S. (2018). In vitro plant tissue culture: means for production of biological active compounds. Planta, 0123456789. [Google Scholar] [Crossref] 
  29. Faleiro, F. G., Junqueira, N. T. V., Junghans, T. G., de Jesus, O. N., Miranda, D., & Otoni, W. C. (2019). Advances in passion fruit (Passiflora spp.) propagation. Revista Brasileira de Fruticultura, 41(2), 1–17. [Google Scholar] [Crossref] 
  30. Faria, G. A., Oliveira, C. P. M. de, Lopes, B. G., Rocha, P. S., Peron, G. M., Souza, K. S., Garcia, C. K., Furlani Junior, E., Cavichioli, J. C., & Felizardo, L. M. (2020). Establishment of a protocol for in vitro propagation of Passiflora caerulea. Research, Society and Development, 9. [Google Scholar] [Crossref] 
  31. Faria, J. L. C., Segura, J., Biolog, D. De, Farmacia, F. De, Valencia, U. De, Vicent, A., Estell, A., August, R., & Smith, M. A. L. (1997). In vitro control of adventitious bud differentiation by inorganic medium components and silver thiosulfate in explants of Passiflora edulis e Flavicarpa. September, 209–212. [Google Scholar]
  32. Fernando, J. A., Lu, Æ. M., & Appezzato-da-glo, S. R. M. Æ. B. (2007). New insights into the in vitro organogenesis process: the case of Passiflora. 37–44. [Google Scholar] [Crossref] 
  33. Ferreira, D. A. T., Sattler, M. C., Carvalho, C. R., & Clarindo, W. R. (2015). Embryogenic potential of immature zygotic embryos of Passiflora: a new advance for in vitro propagation without plant growth regulators. Plant Cell, Tissue and Organ Culture, 122(3), 629–638. [Google Scholar] [Crossref] 
  34. Fraccaroli, M., Nicoletti, S., Maltese, F., Choi, Y. H., Guzzo, F., Levi, M., & Verpoorte, R. (2008). Pre-analytical method for metabolic profiling of plant cell cultures of Passiflora garckei. Biotechnology Letters, 30(11), 2031–2036. [Google Scholar] [Crossref] 
  35. Garcia, R., Pacheco, G., Falcão, E., Borges, G., & Mansur, E. (2011). Influence of type of explant, plant growth regulators, salt composition of basal medium, and light on callogenesis and regeneration in Passiflora suberosa L. (Passifloraceae). Plant Cell, Tissue and Organ Culture, 106(1), 47–54. [Google Scholar] [Crossref] 
  36. Gaspar, T., Kevers, C., Penel, C., Greppin, H., Reid, D. M., Thorpe, T. A., Dhawan, K., Dhawan, S., Sharma, A., Patel, S. S., Soni, H., Mishra, K., Singhai, A. K., Thokchom, R., Mandal, G., Watson, L., Traub, M., Şesan, T. E., Şesan, T. E.,  Mansur, E. (2019). Analyses of Passiflora Compounds by Chromatographic and Electrophoretic Techniques. Plant Cell, Tissue and Organ Culture, 3(1), 1–23. [Google Scholar] [Crossref] 
  37. George, E. F., Hall, M. A., & Klerk, G. J. De. (2008). Plant propagation by tissue culture 3rd edition. In Plant Propagation by Tissue Culture 3rd Edition. [Google Scholar] [Crossref] 
  38. Guzzo, F., Ceoldo, S., Andreetta, F., & Levi, M. (2004). In vitro culture from mature seeds of Passiflora species. Scientia Agricola, 61(1), 108–113. [Google Scholar] [Crossref] 
  39. Hameed, I. H., Cotos, M. R. C., & Hadi, M. Y. (2017).  Antimicrobial, Antioxidant, Hemolytic, Anti-anxiety, and Antihypertensive activity of Passiflora species. Research Journal of Pharmacy and Technology, 10(11), 4079. [Google Scholar] [Crossref] 
  40. Huh, Y. S., Lee, J. K., & Nam, S. Y. (2017). Effect of plant growth regulators and antioxidants on in vitro plant regeneration and callus induction from leaf explants of purple passion fruit (Passiflora edulis Sims). Journal of Plant Biotechnology, 44(3), 335–342. [Google Scholar] [Crossref] 
  41. Isutsa, D. K. (2004). Rapid micropropagation of passion fruit (Passiflora edulis Sims.) varieties. Scientia Horticulturae, 99(3–4), 395–400. [Google Scholar] [Crossref] 
  42. Jafari, M, Daneshvar, M., & Lotfi-Jalalabadi, A. (2016). Control of in vitro contamination of Passiflora caerulea by using of sodium hypocholorite. Indo-Am. J. Agric. & Vet. Sci., 4(2), 8–15. [Google Scholar]
  43. Jafari, Marziyeh, Daneshvar, M. H., & Lotfi, A. (2017). In vitro shoot proliferation of Passiflora caerulea L. via cotyledonary node and shoot tip explants. Biotechnologia, 98(2), 113–119. [Google Scholar] [Crossref] 
  44. Khas, M. E., Abbasifar, A., & Valizadehkaji, B. (2020). Optimization of in vitro propagation of purple passion fruit (Passiflora edulis), an important medicinal and ornamental plant. 7(3), 305–314. [Google Scholar] [Crossref] 
  45. Kim, M., Lim, H.-S., Lee, H.-H., & Kim, T.-H. (2017).  Role identification of Passiflora incarnata Linnaeus : A mini review. Journal of Menopausal Medicine, 23(3), 156. [Google Scholar] [Crossref] 
  46. Kothari, S. L., Joshi, A., Kachhwaha, S., & Ochoa-alejo, N. (2010). Chilli peppers — A review on tissue culture and transgenesis. Biotechnology Advances, 28(1), 35–48. [Google Scholar] [Crossref] 
  47. Krosnick, S. E., Porter-Utley, K. E., MacDougal, J. M., Jørgensen, P. M., & McDade, L. A. (2013). New Insights into the Evolution of Passiflora subgenus Decaloba (Passifloraceae): Phylogenetic Relationships and Morphological Synapomorphies. Systematic Botany, 38(3), 692–713. [Google Scholar] [Crossref] 
  48. Kumar, V., Parvatam, G., & Ravishankar, G. A. (2009). AgNO3 - A potential regulator of ethylene activity and plant growth modulator. Electronic Journal of Biotechnology, 12(2), 1–15. [Google Scholar] [Crossref] 
  49. Lombardi, S. P., Da Silva Passos, I. R., Nogueira, M. C. S., & Appezzato-Da-Glória, B. (2007). In vitro shoot regeneration from roots and leaf discs of Passiflora cincinnata mast. Brazilian Archives of Biology and Technology, 50(2), 239–247. [Google Scholar] [Crossref] 
  50. Lorena Melo Vieira, P. O. S., Amanda Mendes Fernandes, D. I. R., & Otoni, W. C. (2018). Chapter 21 Protocol for Somatic Embryogenesis in Passiflora cincinnata Mast. (Passifloraceae). Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants, Forestry Sciences 85. Springer International Publishing AG. [Google Scholar]
  51. Lugato, D., Simão, M. J., Garcia, R., Mansur, E., & Pacheco, G. (2014). Determination of antioxidant activity and phenolic content of extracts from in vivo plants and in vitro materials of Passiflora alata Curtis. Plant Cell, Tissue and Organ Culture, 118(2), 339–346. [Google Scholar] [Crossref] 
  52. Machado, M. W., Neto, C. S., Salgado, J., Zaffari, G., Barison, A., Campos, F. R., de Corilo, Y. E., Eberlin, M. N., & Biavatti, M. W. (2010). Search for alkaloids on callus culture of Passiflora alata. Brazilian Archives of Biology and Technology, 53(4), 901–910. [Google Scholar] [Crossref] 
  53. Maria Lucia Carneiro Vieira, M. S. C. (2004). Passiflora spp. Passionfruit. Biotechnology in Agriculture - Biotechnology of Fruit and Nut Crops, 29, 435–454. [Google Scholar]
  54. Mikosvki, A. I., Silva, N. T., Souza, C. S., Machado, M. D., Otoni, W. C., Carvalho, I. F., Rocha, D. I., & Silva, M. L. (2019). Tissue culture and biotechnological techniques applied to passion fruit with ornamental potential: an overview. Ornamental Horticulture, 25(2), 189–199. [Google Scholar] [Crossref] 
  55. Monteiro, A. C. B. d. A., Higashi, E. N., Gonçalves, A. N., & Rodriguez, A. P. M. (2000). A novel approach for the definition of the inorganic medium components for micropropagation of yellow passionfruit (Passiflora edulis sims. F. Flavicarpa deg.). In Vitro Cellular and Developmental Biology - Plant, 36(6), 527–531. [Google Scholar] [Crossref] 
  56. Nakayama, F. (1966). Cultivo in vitro de tejidos de Passiflora caerulea. Revista de La Facultad de Agronomia de La Universidad Nacional de La Plata, 42, 63–74. [Google Scholar]
  57. Nhut, D. T., Khiet, B. L. T., Thi, N. N., Thuy, D. T. T., Duy, N., Hai, N. T., & Huyen, P. X. (2007). Chapter 38 High frequencys formation of yellow passion fruit (Passiflora edulis f. Flavicarpa ) via thin cell layer (TCL) Technology. 417–426. [Google Scholar]
  58. Oliveira, D. A., Angonese, M., Gomes, C., & Ferreira, S. R. S. (2016). Valorization of passion fruit (Passiflora edulis sp.) by-products: Sustainable recovery and biological activities. Journal of Supercritical Fluids, 111, 55–62. [Google Scholar] [Crossref] 
  59. Oseni, O. M., V., Pande, T.  K., Nailwal (2018). A Review on Plant Tissue Culture, A Technique for Propagation and Conservation of Endangered Plant Species. International Journal of Current Microbiology and Applied Sciences, 7 (07), 3778-3786. [Google Scholar] [Crossref] 
  60. Otahola, V., & Diaz, M. (2010). Regeneracion in vitro de Passiflora edulis f. flavicarpa y Passiflora quadrangularis utilizando dos tipos de explante provenientes de plantas adultas y bencilaminopurina. Udo, 10(1), 23–28. [Google Scholar]
  61. Otoni, W. C., Pinto, D. L. P., Rocha, D. I., Vieira, L. M., Dias, L. L. C., da Silva, M. L., da Silva, C. V., Lani, E. R. G., da Silva, L. C., & Tanaka, F. A. O. (2013). Organogenesis and Somatic Embryogenesis in Passionfruit (Passiflora sps.). Somatic Embryogenesis and Gene Expression, August 2014, 1–17. [Google Scholar]
  62. Ozarowski, M. (2011). Influence of the physico-chemical factors, plant growth regulators, elicitors and type of explants on callus cultures of medicinal climbers of Passiflora L. Herba Polonica, 57(4). [Google Scholar]
  63. Ożarowski, M., & Thiem, B. (2013). Development and optimization of a low - cost system for micropropagation of valuable medicinal plants of passiflora species. Conference poster. [Google Scholar]
  64. Ozarowski, M., Piasecka, A., Paszel-Jaworska, A., Chaves, D. S. de A., Romaniuk, A., Rybczynska, M., Gryszczynska, A., Sawikowska, A., Kachlicki, P., Mikolajczak, P. L., Seremak-Mrozikiewicz, A., Klejewski, A., & Thiem, B. (2018). Comparison of bioactive compounds content in leaf extracts of Passiflora incarnata, P. caerulea and P. alata and in vitro cytotoxic potential on leukemia cell lines. Brazilian Journal of Pharmacognosy, 28(2), 179–191. [Google Scholar] [Crossref] 
  65. Ozarowski, Marcin, & Thiem, B. (2013). Progress in micropropagation of Passiflora spp. to produce medicinal plants: A mini-review. Brazilian Journal of Pharmacognosy, 23(6), 937–947. [Google Scholar] [Crossref] 
  66. Pacheco, G., Simão, M. J., Vianna, M. G., Garcia, R. O., Vieira, M. L. C., & Mansur, E. (2016). In vitro conservation of Passiflora—A review. Scientia Horticulturae, 211, 305–311. [Google Scholar] [Crossref] 
  67. Pinto, A. P. C., Monteiro-Hara, A. C. B. A., Stipp, L. C. L., & Mendes, B. M. J. (2010). In vitro organogenesis of Passiflora alata. In Vitro Cellular and Developmental Biology - Plant, 46(1), 28–33. [Google Scholar] [Crossref] 
  68. Pinto, D. L. P., de Almeida, A. M. R., Rêgo, M. M., da Silva, M. L., de Oliveira, E. J., & Otoni, W. C. (2011). Somatic embryogenesis from mature zygotic embryos of commercial passionfruit (Passiflora edulis Sims) genotypes. Plant Cell, Tissue and Organ Culture, 107(3), 521–530. [Google Scholar] [Crossref] 
  69. Pinto, D. L. P., de Almeida Barros, B., Viccini, L. F., de Campos, J. M. S., da Silva, M. L., & Otoni, W. C. (2010). Ploidy stability of somatic embryogenesis-derived Passiflora cincinnata Mast. plants as assessed by flow cytometry. Plant Cell, Tissue and Organ Culture, 103(1), 71–79. [Google Scholar] [Crossref] 
  70. Pipino, L., Braglia, L., Giovannini, A., Fascella, G., & Mercuri, A. (2008). In vitro regeneration of Passiflora species with ornamental value. Propagation of Ornamental Plants, 8(1), 47–49. [Google Scholar]
  71. Prammanee, S., Thumjamras, S., Chiemsombat, P., & Pipattanawong, N. (2011). Efficient shoot regeneration from direct apical meristem tissue to produce virus-free purple passion fruit plants. Crop Protection, 30(11), 1425–1429. [Google Scholar] [Crossref] 
  72. Prithviraj, H.S.; H. Kumar; N.K. Prakasha; Shobha, J. (2015). An efficient in vitro regeneration of multiple shoots from leaf explant of Passiflora caerulea L. an important medicinal plant. International Journal of Recent Scientific Research, 6(11), 7263–7265. [Google Scholar]
  73. Pua, E.-C. (1999). Morphogenesis in cell and tissue cultures: role of ethylene and polyamines. In Morphogenesis in plant tissue culture (pp. 255–303). Kluwer Academic Publishers. [Google Scholar]
  74. Ragavendran, C., Kamalanathan, D., Reena, G., Natarajan, D., Plant, A. J., & Res, S. (2012). In vitro propagation of nodal and shoot tip explants of Passiflora foetida L. an exotic medicinal plant. Asian Journal of Plant Science and Research. Pelagia Research Library 2(6), 707–711. [Google Scholar]
  75. Ramaiya, S. D., Bujang, J. S., & Zakaria, M. H. (2014). Assessment of total phenolic, antioxidant, and antibacterial activities of passiflora species. The Scientific World Journal, 2014. [Google Scholar] [Crossref] 
  76. Rathod, H. P., Pohare, M. B., Bhor, S. A., Jadhav, K. P., Batule, B. S., Shahakar, S., Wagh, S. G., Wadekar, H. B., Kelatkar, S. K., & Kulkarni, M. R. (2014). In vitro micropropagation of blue passion flower (Passiflora caerulea L.). Trends in Biosciences, 7(19), 3079–3082. [Google Scholar]
  77. Rocha, D. I., Vieira, L. M., Tanaka, F. A. O., da Silva, L. C., & Otoni, W. C. (2012). Somatic embryogenesis of a wild passion fruit species Passiflora cincinnata Masters: Histocytological and histochemical evidences. Protoplasma, 249(3), 747–758. [Google Scholar] [Crossref] 
  78. Rosa, Y. B. C. J., Bello, C. C. M., & Dornelas, M. C. (2015). Species-dependent divergent responses to in vitro somatic embryo induction in Passiflora spp. Plant Cell, Tissue and Organ Culture, 120(1), 69–77. [Google Scholar] [Crossref] 
  79. Shekhawat, M. S., Manokari, M., & Ravindran, C. P. (2015).  An improved micropropagation protocol by ex vitro rooting of Passiflora edulis Sims. f. flavicarpa Deg. through nodal segment culture. Scientifica, 2015, 1–8. [Google Scholar] [Crossref] 
  80. Silva, C. G. (2000). Tissue culture and phytochemical studies of Podophyllum, Diphylleia and Passiflora species. PhD thesis. University of Nottingham. 20-44. [Google Scholar]
  81. Silva, G. C., & Bottoli, C. B. G. (2015). Analyses of Passiflora compounds by chromatographic and electrophoretic techniques. Critical reviews in analytical chemistry, 45(1), 76–95. [Google Scholar] [Crossref] 
  82. Silvério Junior, L. H., Faria, G. A., Lopes, B. G., Ferreira, A. F. A., Oliveira, C. P. M. de, Garcia, C. K., Felizardo, L. M., Rocha, P. S., Ribeiro, B. C., Cavichioli, J. C., & Furlani Junior, E. (2020). Estabelecimento in vitro de maracujá Passiflora tenuifila. Impacto, Excelência e Produtividade Das Ciências Agrárias No Brasil 4, June, 120–135. [Google Scholar] [Crossref] 
  83. Singh, C. R. (2018). Review on problems and its remedy in plant tissue culture. Asian Journal of Biological Sciences, 11, 165–172. [Google Scholar] [Crossref] 
  84. Sozo, J. S., Cruz, D. C., Pavei, A. F., Medeiros, I., Wolfart, M., Ramlov, F., Montagner, D. F., Maraschin, M., & Viana, A. M. (2016). In vitro culture and phytochemical analysis of Passiflora tenuifila Killip and Passiflora setacea DC (Passifloraceae). Protocols for In Vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants, Second Edition, Methods in Molecular Biology, 1391. [Google Scholar] [Crossref] 
  85. Thomas, D. (2008). The role of activated charcoal in plant tissue culture. Biotechnology Advances, 26, 618–631. [Google Scholar] [Crossref] 
  86. Tiwari, S; S., Singh; S., Tripathi; S., Kumar. (2016). A pharmacological review: Passiflora species. International Journal of Pharmacognosy. India. 3(1), 10–18. [Google Scholar] [Crossref] 
  87. Torsten U., & MacDougal, J. M. (2004). Passiflora: Passionflowers of the world (1st ed.). Timber Press. [Google Scholar]
  88. Trevisan, F., & Mendes, B. M. J. (2005). Optimization of in vitro organogenesis in passion fruit (Passiflora edulis f. flavicarpa). Scientia Agricola, 62(4), 346–350. [Google Scholar] [Crossref] 
  89. Tuhaise, S., Nakavuma, J. L., Adriko, J., Ssekatawa, K., & Kiggundu, A. (2019). In vitro regeneration of Ugandan passion fruit cultivars from leaf discs. BMC Research Notes, 12(1), 1–7. [Google Scholar] [Crossref] 
  90. Vanderplank, J. (1996). Passion Flowers. MIT Press. [Google Scholar]
  91. Vanderplank J. (2000). Passion Flowers 3 rd edition. MIT Press. [Google Scholar]
  92. Veeramohan, R., Haron, N. W., & Taha, R. M. (2013). Scanning electron microscopy studies and in vitro regeneration of Passiflora edulis Sims var. Edulis for conservation. International Journal of Environmental Science and Development, 4(5), 586–590. [Google Scholar] [Crossref] 
  93. Vieira, L. M., Rocha, D. I., Taquetti, M. F., da Silva, L. C., de Campos, J. M. S., Viccini, L. F., & Otoni, W. C. (2014). In vitro plant regeneration of Passiflora setacea D.C. (Passifloraceae): the influence of explant type, growth regulators, and incubation conditions. In Vitro Cellular and Developmental Biology - Plant, 50(6), 738–745. [Google Scholar] [Crossref] 
  94. Yuldasheva, L. N., Carvalho, E. B., Catanho, M. T. J. A., & Krasilnikov, O. V. (2005). Cholesterol-dependent hemolytic activity of Passiflora quadrangularis leaves. Brazilian Journal of Medical and Biological Research, 38(7), 1061–1070. [Google Scholar] [Crossref] 
  95. Zas, P., & John, S. (2016). Diabetes and medicinal benefits of Passiflora edulis. World Journal of Pharmaceutical Research, 3(2), 1961–1967. [Google Scholar]
  96. Zas, P., & John, S. (2017). Phytochemical analysis and thin layer chromatographic studies of Passiflora edulis leaf extracts. International Journal of Food Science and Nutrition, 2(2), 38–41. [Google Scholar]