Pen Academic Publishing   |  e-ISSN: 2602-4772

Original article | International Journal of Innovative Approaches in Agricultural Research 2020, Vol. 4(2) 166-176

The Use of Drones in Agricultural Production

Selçuk Kaya & Zdobyslaw Goraj

pp. 166 - 176   |  DOI: https://doi.org/10.29329/ijiaar.2020.254.2   |  Manu. Number: MANU-2004-14-0004

Published online: June 29, 2020  |   Number of Views: 21  |  Number of Download: 94


Abstract

The drones called as mainly unmanned aerial vehicles (UAVs) have been commonly used recently in agricultural production in all part of the world because of reducing costs of hardware and the software technology as well as tremendous progresses. Moreover, UAV’s gave opportunities such as reaching much faster and efficient in emergency situations, allowing access to places which humans can’t reach etc. Therefore, UAVs are used in many part of our life not only for agriculture both also traffic surveillance, military operations, disaster management, border-patrolling, aerial image georeferencing, courier services, firefighting as well as monitoring of wildlife, nature, sky life etc. In the agriculture, the UAV’s are used mostly for monitoring the crop production using spectral imaging on each period of time in order to identify the problems on the field such as water shortage and diseases, tracking animals using cameras and herding them with creating sounds produced by the UAV’s, spraying to the field with pesticide, fungicide and water by equipping spraying kit on a UAV, generating the strong winds by the propellers of the UAV increasing pollination in the hybrid plant production as well as separating the small harmful bugs from the plants etc. The UAV’s contribute a lot more to the agricultural sector, if the right implementations and researches are done. However, using new implemented lightweight materials to increase the endurance of the UAV, developing new type of lenses and sensors which can identify other diseases on plants or animals which can’t be seen by the current equipment and equipping a granule spreader on a UAV so that it can distribute the seeds on the field much faster than a tractor.

Keywords: Agriculture, UAVs, Crop Production, Animal Production, Remote Sensing


How to Cite this Article?

APA 6th edition
Kaya, S. & Goraj, Z. (2020). The Use of Drones in Agricultural Production . International Journal of Innovative Approaches in Agricultural Research, 4(2), 166-176. doi: 10.29329/ijiaar.2020.254.2

Harvard
Kaya, S. and Goraj, Z. (2020). The Use of Drones in Agricultural Production . International Journal of Innovative Approaches in Agricultural Research, 4(2), pp. 166-176.

Chicago 16th edition
Kaya, Selcuk and Zdobyslaw Goraj (2020). "The Use of Drones in Agricultural Production ". International Journal of Innovative Approaches in Agricultural Research 4 (2):166-176. doi:10.29329/ijiaar.2020.254.2.

References
  1. Allred, B., N. Eash, R. Freeland, L. Martinez and D. Wishart (2018). Effective and efficient agricultural drainage pipe mapping with UAs thermal infrared imagery: A case study. Agric. Water Manag., 197, 132–137.  [Google Scholar]
  2. Alsalam, B.H.Y., K. Morton, D. Campbell and F. Gonzalez (2017). Autonomous UAV with vision based on-board decision making for remote sensing and precision agriculture. Proc. IEEE Aeropace Conference, Big Sky, MT, USA, 4–11 March, 1–12. [Google Scholar]
  3. Andonovic, I., C. Michie, P. Cousin, A. Janati, C. Pham and M. Diop (2018). Precision livestock farming technologies. Global Internet of Things Summit (GIoTS); IEEE. 1-6. [Google Scholar]
  4. Arroyo, J. A., C. Gomez-Castaneda, E. Ruiz, E.M. de Cote, F. Gavi and L. E. Sucar (2017). Assessing nitrogen nutrition in corn crops with airborne multispectral sensors. Proc. International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Arras, France, 27–30 June, 259–267. [Google Scholar]
  5. Baluja, J., M. Diago, P. Balda, R. Zorer, F. Meggio and F. Morales (2012). Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrig. Sci., 30:511-522.  [Google Scholar]
  6. Casbeer, D.W., D.B. Kingston, R.W. Beard and T.W. McLain (2011). Cooperative forest fire surveillance using a team of small unmanned air vehicles. Int. J. Syst. Sci., 37(6), 351–60.  [Google Scholar]
  7. Chamoso, P., W. Raveane, V. Parra and A. González (2014). UAVs applied to the counting and monitoring of animals. Ambient Intelligence-Software and Applications. Cham, Switzerland: Springer, 71-80. [Google Scholar]
  8. Christiansen, M.P., M.S. Laursen, R. N. Jørgensen, S. Skovsen and R. Gislum (2017). Designing and testing a UAV mapping system for agricultural field surveying. Sensors, 17, 2703. [Google Scholar]
  9. Darack, E. (2012). UAVs: The new frontier for weather research and prediction. Weatherwise, 65(2), 20–27. [Google Scholar]
  10. Doering, D., A. Benenmann, R. Lerm, E. P. de Freitas, I. Muller, J. M. Winter and C. E. Pereira, (2014). Design and optimization of a heterogeneous platform for multiple UAV use in precision agriculture applications. IFAC Proc. 47, 12272–12277. [Google Scholar]
  11. Faiçal, B.S., H. Freitas, P.H. Gomes, L.Y. Mano, G. Pessin, A. C. de Carvalho, B. Krishnamachari and J. Ueyama (2017). An adaptive approach for UAV-based pesticide spraying in dynamic environments. Comput. Electron. Agric., 138, 210–223.  [Google Scholar]
  12. Fancisco-Javier, T. and J. Mesas-Carrascosa, J. 2015. Assessing optimal flight parameters for generating accurate multispectral orthomosaicks by UAV to support site-specific crop management. Remote Sens., 7(10), 12793-12814. [Google Scholar]
  13. Gevaert, C.M., J. Tang, F. J. Garcia-Haro, J M. Suomalainen and L. Kooistra (2014). Combining hyperspectral UAV and multispectral Formosat-2 imagery for precision agriculture applications. Proc. 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in remote sensing. Lausanne, Switzerland, 24-26. 06. 2014. [Google Scholar]
  14. Gonzalez, L. F., A. Mcfadyen and E. Puig. (2018). Advances in Unmanned Aerial Systems and Payload Technologies for Precision Agriculture. Advances in Agricultural Machinery and Technologies.  [Google Scholar]
  15. Gonzalez-Dugo, V., P. Zarco-Tejad, E. Nicolas, P. Nortes, J. Alarco and D. Intrigliolo (2013). Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precision Agriculture.  [Google Scholar]
  16. Guo, T., T. Kujirai and T. Watanabe (2012). Mapping crop status from an unmanned aerial vehicle for precision agriculture applications. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 39: B1 [Google Scholar]
  17. Havens, K. and E. Sharp (2015). Thermal Imaging Techniques to Survey and Monitor Animals in the Wild: A Methodology. Academic Press;  [Google Scholar]
  18. Hentschke, M., E. Freitas, C. Hennig and C. Veiga (2018). Evaluation of altitude sensors for a crop spraying drone. Drones 2, 3. MDPI, 25.  [Google Scholar]
  19. Hovhannisyan, P. E. (2018). Creation of a digital model of fields with application of DJI Phantom 3 drone and the opportunities of its utilization in agriculture. Ann. Agr. Sci., 177-180. [Google Scholar]
  20. Huuskonen, J. T. O. (2018). Soil Sampling with drones and augmented reality in precision agriculture. Comput. Electron. Agr., 25-35. [Google Scholar]
  21. James, W. and  J. M.-C. Jones (2017). Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agric. Syst., 269-288. [Google Scholar]
  22. Jannoura, R., K. Brinkmann, D. Uteau, C. Bruns and R. G. Joergensen (2015). Monitoring of crop biomass using true colour aerial photographs taken from a remote controlled hexacopter. Biosyst. Eng., 129, 341–351.  [Google Scholar]
  23. Jayme Garcia, A. B. (2018). Perspectives on the use of unmanned aerial systems to monitor cattle. Outlook Agric., 47(3), 214-222. [Google Scholar]
  24. Jessica Y. L. and A.E. Tay (2018). Reaching new heights: can drones replace current methods to study plant population dynamics. Plant Ecol., 10, 1139-1150. [Google Scholar]
  25. Khanal, S., J. Fulton and S. Shearer (2016). An overview of current and potential applications of thermal remote sensing in precision agriculture. Comput. Electron. Agr., 139, 22-32. [Google Scholar]
  26. Long, D., C. Mr Carthy and T. Jensen (2016). Row and water front detection from UAV thermal-infrared imagery for furrow irrigation monitoring. Proc. International Conference on Advanced Intelligent Mechatronics (AIM), Banff, AB, Canada, 12–15 July. 300–305. [Google Scholar]
  27. Lv, M., S. Xiao, Y. Tang and Y. He (2019). Influence of UAV flight speed on droplet deposition characteristics with the application of infrared thermal imaging. Int. J.  Agric. Biol. Eng., 12(3),10-17 [Google Scholar]
  28. National Research Council. 1997. Precision agriculture in the 21st century. Washington, DC: National Academy Press. 149 p. [Google Scholar]
  29. Noriega, A. and  R. Anderson (2016). Linear-optimization-based path planning algorithm for an agricultural UAV. Proc. Infotech of American Institute of Aeronautics and Astronautics (AIAA), San Diego, CA, USA, 13–16 September. 1003. [Google Scholar]
  30. Nyamuryekunge, S., A. Cibils, R. Estell and A. Gonzalez (2016). Use of an unmanned aerial vehicle—Mounted video camera to assess feding behavior of raramuri criollo cows. Rangeland Ecology & Management,  69, 386-389. [Google Scholar]
  31. Peña, J. M., J. Torres-Sánchez, A. I. de Castro, M. Kelly and F. López-Granados (2013). Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLoS One, 8(10):e77151 [Google Scholar]
  32. Perry, E., J. Brand, S. Kant and G. Fitzgerald (2012). Field-based rapid phenotyping with unmanned aerial vehicles. Australian Society of Agronomy, 5, 349-379. [Google Scholar]
  33. Piug, E., F. Gonzalez, G. Hamilton and P. Grundy (2015). Assessment of crop insect damage using unmanned aerial systems: A machine learning approach. 21st International Congress on Modelling and Simulation; Gold Coast, Australia; 29 Nov–4 Dec.  [Google Scholar]
  34. Redmond, R. And C. W. Shamshiri (2018). Research and development in agricultural robotics: A perspective of digital farming. Int. J. Agric. Biol. Eng., 11(4), 1-14. [Google Scholar]
  35. Rohit Sarma, S. S. (2018). Big GIS analytics framework for agricultural supply chains: A literature review identifying the current trends and future perspectives. Comput. Electron. Agr., 103-120. [Google Scholar]
  36. Roope Nasi, N. V. (2018). Estimating Biomass and Nitrogen Amount of Barley and Grass Using UAV and Aircraft Based Spectral and Photogrammetric 3D Features. Remote Sens., 1-32. [Google Scholar]
  37. Santesteban, L., S. Di Gennaro, A. Herrero-Langreo, C. Miranda, J. Royo and A. Matese (2017). High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard. Agric. Water Manag., 183, 49–59. [Google Scholar]
  38. Schmale III, D., B. Dingus and C. Reinholtz (2008). Development and application of an autonomous aerial vehicle for precise aerobiological sampling above agricultural fields. J. Field Robot., 25 (8), 467-492. [Google Scholar]
  39. Shafian, S., N. Rajan, R. Schnell, M. Bagavathiannan, J. Valasek and Y. Shi (2018). Unmanned aerial systems-based remote sensing for monitoring sorghum growth and development. PLoS One, 13(5):e0196605.  [Google Scholar]
  40. Shah, S. S. H., A. H. Khawaja, J. Waqas, T.H. Rehan, A. Awais and A. Muhammad (2018). Development of UAV Octocopter Based on Pesticides Spraying System.  UW J. Sci. Technol., 2, 13-17.   [Google Scholar]
  41. Simic Milas, A. M. R. (2018). The Importance of leaf area index in mapping chlorophyll content of corn under different agricultural treatments using UAV images. Int. J. Remote Sens., 5415-5431. [Google Scholar]
  42. Stein, N. (2017). The Future of Drones in the Modern Farming Industry. Geomedia, 21(5), 31-37. [Google Scholar]
  43. Texas A&M AgriLife (2019). Drones could apply thermal imaging to identify sick livestock in feedlots. https://research.tamu.edu/2019/03/07/drones-could-applythermal-imaging-to-identify-sicklivestock-in-feedlots/ [Accessed:  December 21, 2019] [Google Scholar]
  44. Tokekar, P., J. Vander Hook, D. Mulla and V. Isler (2016). Sensor planning for a symbiotic UAV and UGV system for precision agriculture. IEEE Trans. Robot., 32, 1498–1511. [Google Scholar]
  45. Torres-Sãnchez, J., F. López-Granados, A.I. De Castro and J. M. Peña-Barragán (2013). Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management. PLoS One, 8, e58210. [Google Scholar]
  46. Torres-Sánchez, J., F. López-Granados, N.  Serrano, O. Arquero and J. M. Peña (2015). High-throughput 3-D monitoring of agricultural-tree plantations with unmanned aerial vehicle (UAV) technology. PLoS One, 10: e0130479.  [Google Scholar]
  47. Vayssade, J., R. Arquet and M. Bonneau (2019). Automatic activity tracking of goats using drone camera. Comput. Electron. Agr., 162, 767-772. [Google Scholar]
  48. Vega, F.A., F. C. Ramirez, M. P. Saiz and F. O. Rosúa (2015). Multi-temporal imaging using an unmanned aerial vehicle for monitoring a sunflower crop. Biosyst. Eng., 132, 19–27.  [Google Scholar]
  49. Webb, P., S. A. Mehlhorn and P. Smartt (2017). Developing protocols for using a UAV to monitor herd health. Proc. ASABE Annual International Meeting; Spokane, WA, USA, 16-19 July 2017. [Google Scholar]
  50. Xiongkui, H., J.  Bonds, A. Herbst and J. Langenakens (2017). Recent development for unmanned aerial vehicle for plant protection in East Asia. Int. J. Agric. Biol. Eng., 10(3), 18-30. [Google Scholar]
  51. Yallappa, D., M. Veerngouda, D. Maski, V. Palled and M. Bheemanna (2017). Development and evaluation of drone mounted sprayer for pesticide applications to crops. IEEE Global Humanitarian Technology Conference, 1-7.  [Google Scholar]
  52. Yinka-Banjo, C. O., W. A. Owolabi and A. O. Akala (2018). Birds control in farmland using swarm of UAVs: A behavioral model approach. In: Science and Information Conference. Cham: Springer; 333-345.  [Google Scholar]
  53. Yinka-Banjo, C. and A. Olasupo (2019). Sky-Farmers: Applications of Unmanned Aerial Vehicles (UAV) in Agriculture, IntechOpen, https://www.intechopen.com/online-first/sky-farmers-applications-of-unmanned-aerial-vehicles-uav-in-agriculture [Google Scholar]
  54. Zarco-Tejada, P.J., M. Guillén-Climent, R. Hernández-Clemente, A. Catalina, M. González and P. Martin (2013). Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV). Agric. For. Meteorol., 171, 281–294. [Google Scholar]
  55. Zhang, C. and J. Kovacs (2012). The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric., 13, 693–712. [Google Scholar]
  56. Zhang, J., B. Basso, R. F. Price, G. Putman and G. Shuai (2018). Estimating plant distance in maize using unmanned aerial vehicle (UAV). PLoS One. 13(4):e0195223.  [Google Scholar]