International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2020, Vol. 4(1) 99-118

Biochemical Alterations in the Leaves of Resistant and Susceptible Mungbean Genotypes Infected with Mungbean Yellow Mosaic India Virus

Areeha Suhail, Khalid Pervaiz Akhtar Khalid, Amjad Hameed Hameed, Najeeb Ullah, Imran Amin & Ghulam Abbas

pp. 99 - 118   |  DOI: https://doi.org/10.29329/ijiaar.2020.238.11

Published online: March 29, 2020  |   Number of Views: 226  |  Number of Download: 697


Abstract

Mungbean (Vigna radiata), an important leguminous crop, is highly susceptible to yellow mosaic disease (YMD) caused by Mungbean yellow mosaic India virus (MYMIV), resulting in high yield penalty. Previously, different varieties of mungbean have been reported possessing resistance/ tolerance against MYMIV. However, the molecular events occurring during compatible and incompatible interactions between mungbean and MYMIV are yet to be explored. Therefore, in this study using MYMIV-resistant (NM-2016), moderately resistant (NM-2011) and susceptible genotype (VC-1647C), alterations in various biochemical attributes due to MYMIV infection were analysed and compared with healthy non-inoculated control plants for understanding the resistance mechanism. After MYMIV inoculation, the level of total phenolic contents (TPC) and total soluble proteins (TSP) increased significantly in the susceptible genotype. However, the level of Malondialdehyde (MDA) and Ascorbate peroxidase (APX) remained same in all the genotypes. Level of superoxide dismutase (SOD) and catalase (CAT) decreased in the susceptible genotype but CAT level increased in the moderately resistant genotype. Protease level decreased significantly in all the genotypes while esterase level increased in moderately resistant and susceptible genotype. Peroxidase (POD) increased only in moderately resistant genotype and Total Oxidant Status (TOS) increased significantly in the susceptible genotype. Due to MYMIV infection the level of all plant pigments decreased in all the genotypes tested. The comparative proteome analysis using SDS-PAGE resolved 22 peptides with molecular weight from 12.5 to 163 kDa. Differential expression of protein phosphatase 2C (PP2C) and Cytochrome b6 (Photosynthesis) in resistant and moderately resistant genotypes; Pectin acetyl esterase and Resistant specific protein-1(4) in resistant genotype and up-regulation of superoxide dismutase [Cu-Zn] and RuBisco by MYMIV may have triggered signal transduction pathway and consequently induced a resistance response against MYMIV in V. radiata by activating PR proteins.

Keywords: Biochemical; alterations; resistant; susceptible; mungbean; YMD


How to Cite this Article

APA 6th edition
Suhail, A., Khalid, K.P.A., Hameed, A.H., Ullah, N., Amin, I. & Abbas, G. (2020). Biochemical Alterations in the Leaves of Resistant and Susceptible Mungbean Genotypes Infected with Mungbean Yellow Mosaic India Virus . International Journal of Innovative Approaches in Agricultural Research, 4(1), 99-118. doi: 10.29329/ijiaar.2020.238.11

Harvard
Suhail, A., Khalid, K., Hameed, A., Ullah, N., Amin, I. and Abbas, G. (2020). Biochemical Alterations in the Leaves of Resistant and Susceptible Mungbean Genotypes Infected with Mungbean Yellow Mosaic India Virus . International Journal of Innovative Approaches in Agricultural Research, 4(1), pp. 99-118.

Chicago 16th edition
Suhail, Areeha, Khalid Pervaiz Akhtar Khalid, Amjad Hameed Hameed, Najeeb Ullah, Imran Amin and Ghulam Abbas (2020). "Biochemical Alterations in the Leaves of Resistant and Susceptible Mungbean Genotypes Infected with Mungbean Yellow Mosaic India Virus ". International Journal of Innovative Approaches in Agricultural Research 4 (1):99-118. doi:10.29329/ijiaar.2020.238.11.

References
  1. Abbas, G., A. Hameed, M. Rizwan, M. Ahsan, M. J. Asghar and N. Iqbal (2015). Genetic Confirmation of mungbean (Vigna radiata) and Mashbean (Vigna mungo) interspecific recombinants using molecular markers. Front. Plant Sci., 6, 1107 [Google Scholar]
  2. Aftab, M., S. Asad, K. Khokhar, M. Ayub and T. Butt T (1993). Effect of Mungbean yellow mosaic virus on the yield and growth components of asparagus bean. Pak. J. Phytopathol., 5, 58-61 [Google Scholar]
  3. Ainsworth, E. A. and K.M. Gillespie (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc., 2, 875-877 [Google Scholar]
  4. Akhtar, K. P., G. Sarwar, G. Abbas, M. J. Asghar, N. Sarwar and T. M. Shah (2011). Screening of mungbean germplasm against Mungbean yellow mosaic India virus and its vector Bemisia tabaci. Crop Protec., 30, 1202-1209 [Google Scholar]
  5. Akhtar, K. P., R. Kitsanachandee, P. Srinives, G. Abbas, M. J. Asghar, T. Shah, B. Atta, O. Chatchawankanphanich, G. Sarwar and M. Ahmad (2009). Field evaluation of mungbean recombinant inbred lines against mungbean yellow mosaic disease using new disease scale in Thailand. Plant Pathol. J., 25, 422-428 [Google Scholar]
  6. Aly, A. A., M. Mansour, H. I. Mohamed and K. A. Abd-Elsalam (2012). Examination of correlations between several biochemical components and powdery mildew resistance of flax cultivars. Plant Pathol. J. 28, 149-155 [Google Scholar]
  7. Bashir, M. and B. A. Malik (1988). Diseases of major pulse crops in Pakistan—a review. Int J Pest Manag.,  34, 309-314 [Google Scholar]
  8. Bashir, M., Z. Ahmad and S. Mansoor (2006). Occurrence and distribution of viral diseases of mungbean and mashbean in Punjab, Pakistan. Pak. J. Bot., 38, 1341 [Google Scholar]
  9. Beers, R. F. and I. W. Sizer (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem., 195, 133-140 [Google Scholar]
  10. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248-254. [Google Scholar]
  11. Chance, B. and A. Maehly (1955). Assay of catalases and peroxidases. Methods Enzymol.,  2, 764-775. [Google Scholar]
  12. Chatterjee, A. and S.K. Ghosh (2008). Alterations in biochemical components in mesta plants infected with yellow vein mosaic disease. Braz. J. Plant Physiol., 20, 267-275. [Google Scholar]
  13. Dixit, V., V. Pandey and R. Shyam (2001). Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J. Exp. Bot., 52, 1101-1109. [Google Scholar]
  14. Drapeau, G.R. (1976). Protease from Staphyloccus aureus. Methods Enzymol., 45. 469-475. [Google Scholar]
  15. Erel, O. A. (2005). A new automated colorimetric method for measuring total oxidant status. Clin. Biochem., 38, 1103-1111 [Google Scholar]
  16. Hameed, A., K.P. Akhtar, M. Y. Saleem and M. Asghar (2010). Correlative evidence for peroxidase involvement in disease resistance against Alternaria leaf blight of tomato. Acta Physiolog. Plant., 32, 1171-1176 [Google Scholar]
  17. Hameed, A., M. Qureshi, M. Nawaz N. Iqbal (2012). Comparative seed storage protein profiling of mung bean genotypes. Pak. J. Bot., 44, 1993-1999 [Google Scholar]
  18. Hameed, S., K. P. Akhtar, A. Hameed, T. Gulzar, S. Kiran, S. Yousaf, G. Abbas, M. J. Asghar and N. Sarwar (2017). Biochemical changes in the leaves of mungbean (Vigna radiata) plants infected by phytoplasma. Turk. J. Biochem., 42,591-599 [Google Scholar]
  19. Hammond-Kosack, K. (2000). Responses to Plant Pathogens In “Biochemistry and Molecular Biology of Plants” p 1102-1156 Ed BB Buchanan, W Gruissem and RL Jones. Pp1367 American Society of Plant Physiology, Rockville, Maryland, USA. [Google Scholar]
  20. Harma, M., M. Harma and O. Erel (2005). Oxidative stress in women with preeclampsia. The Am. J. Obstet. Gynecol., 192, 656-657 [Google Scholar]
  21. Hu, X., H. Zhang, G. Li, Y. Yang, Z. Zheng and F. Song (2009). Ectopic expression of a rice protein phosphatase 2C gene OsBIPP2C2 in tobacco improves disease resistance. Plant Cell Rep., 28, 985-995 [Google Scholar]
  22. Johansen, C., J. M. Duxbury, S. M. Virmani, C. L. Gowda, S. Pande and P. K. Joshi (2000). Legumes in rice and wheat cropping systems of the Indo-Gangetic Plain-Constraints and opportunities. International Crops Research Institute for the Semi-Arid Tropics [Google Scholar]
  23. Ilyas, M., J. Qazi, S. Mansoor, R. W. Briddon (2010). Genetic diversity and phylogeography of begomoviruses infecting legumes in Pakistan. J. Gen. Virol., 91, 2091-2101 [Google Scholar]
  24. Junqueira, A., I. Bedendo and S. Pascholati (2004). Biochemical changes in corn plants infected by the maize bushy stunt phytoplasma. Physiol. Mol. Plant Pathol., 65, 181-185 [Google Scholar]
  25. Karthikeyan, A., R. Vanitharani, V. Balaji, S. Anuradha, P. Thillaichidambaram, P. Shivaprasad, C. Parameswari, V. Balamani, M. Saminathan and K. Veluthambi (2004). Analysis of an isolate of Mungbean yellow mosaic virus (MYMV) with a highly variable DNA B component. Arch. Virol., 149, 1643-1652. [Google Scholar]
  26. Kichtenthaler, H. and A. Wellburn (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvent. Biochem. Soc. Trans., 603, 591-593 [Google Scholar]
  27. Kitsanachandee, R, P. Somta, O. Chatchawankanphanich, K.P. Akhtar, T. M. Shah, R. M. Nair, T. S. Bains, A. K. Sirari, Kaur and P. Srinives (2013). Detection of quantitative trait loci for Mungbean yellow mosaic India virus (MYMIV) resistance in mungbean (Vigna radiata (L.) Wilczek) in India and Pakistan. Breeding Sci., 63, 367-373 [Google Scholar]
  28. Kothandaraman, S. V., A. Devadason and M. V. Ganesan (2016). Seed-borne nature of a begomovirus, Mungbean yellow mosaic virus in black gram. App. Microbiol. Biotech., 100, 1925-1933 [Google Scholar]
  29. Kundu, S, D. Chakraborty, A. Kundu and A. Pal (2013). Proteomics approach combined with biochemicalattributes to elucidate compatible andincompatible plant-virus interactions betweenVigna mungo and Mungbean Yellow MosaicIndia Virus. Proteome Sci., 11, 11-15 [Google Scholar]
  30. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685 [Google Scholar]
  31. Lattanzio, V., V. M. Lattanzio and A. Cardinali. (2006). Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. in Phytochemistry: Advances in research Trivandrum, Kerala, India: Research, Signpost, 66, 23-67 [Google Scholar]
  32. Mourad, G., R. Emerick and A. Smith (2000). Molecular cloning and sequencing of a cDNA encoding an isoleucine feedback insensitive threonine dehydratase/deaminase of Arabidopsis line GM11b (Acc no. AF177212) (PGR 00-020). Plant Physiol., 122, 619 [Google Scholar]
  33. Nasir, F., K.P. Akhtar, A. Hameed, S. Yousaf, T. Gulzar, N. Sarwar, T. M. Shah and S. Kiran (2017). Biochemical alterations in the leaves of different Desi and Kabuli type chickpea genotypes infected by phytoplasma. Turk. J. Biochem., 42, 409-417 [Google Scholar]
  34. Patel, S. J., R. Subramanian and Y. S. Jha (2011). Biochemical and molecular studies of early blight disease in tomato. Phytoparasitica 39:269-283 [Google Scholar]
  35. Qi X, Li MW, Xie M, Liu X, Ni M, Shao G, Song C, Yim AK-Y, Tao Y, Wong, F-L (2014) Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat. Commun., 5 [Google Scholar]
  36. Siddique, Z., K. P. Akhtar, A. Hameed, N. Sarwar, I. U. Haq and S. A. Khan (2014). Biochemical alterations in leaves of resistant and susceptible cotton genotypes infected systemically by Cotton leaf curl Burewala virus. J. Plant Interac., 9, 702-711 [Google Scholar]
  37. Siddique, Z., K. P. Akhtar, A. Hameed, I. Haq, M. Ashraf, N. Sarwar and M. Khan (2015). Physiological response of cotton leaf curl Burewala virus-infected plants of tolerant and susceptible genotypes of different Gossypium species. J. Plant Pathol., 97, 483-490 [Google Scholar]
  38. Tecsi, L. I., A. M. Smith, A. J. Maule and R. C. Leegood (1996). A spatial analysis of physiological changes associated with infection of cotyledons of marrow plants with cucumber mosaic virus. Plant Physiol., 111, 975-985 [Google Scholar]
  39. Van Asperen, K. (1962). A study of housefly esterases by means of a sensitive colorimetric method. J. Insect Physiol. 8, 401-416 [Google Scholar]
  40. Velazhahan, R. and P. Vidhyasekaran (1994). Role of phenolic compounds, peroxidase and polyphenol oxidase in resistance of groundnut to rust. Acta Phytopathol. Entomol. Hung.,29, 23-29 [Google Scholar]
  41. Venkatesan, S., R. Radjacommare, S. Nakkeeran and A. Chandrasekaran (2010). Effect of biocontrol agent, plant extracts and safe chemicals in suppression of Mungbean yellow mosaic virus (MYMV) in black gram (Vigna mungo). Arch. Phytopathol. Plant Protec., 43, 59-72 [Google Scholar]
  42. Zhang, J. and M. Kirkham (1994). Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol., 35, 785-791. [Google Scholar]