Pen Academic Publishing   |  e-ISSN: 2602-4772

Original article | International Journal of Innovative Approaches in Agricultural Research 2020, Vol. 4(1) 89-98

Phytotoxic Effects of Thorn apple (Datua stramonium L.) Seed Aqueous Extract on Seed Germination of some Cereal Crops Using Probit Analysis

Awadallah Belal Dafaallah, Yasir H. Hussein & Waleed N. Mustafa

pp. 89 - 98   |  DOI: https://doi.org/10.29329/ijiaar.2020.238.10   |  Manu. Number: MANU-1907-21-0003.R1

Published online: March 29, 2020  |   Number of Views: 19  |  Number of Download: 55


Abstract

Solanaceae plants are strong allelopathic in nature as they produce and release many chemical compounds into the environment. This study was carried out to investigate the phytotoxic effects of the seeds aqueous extract of thorn apple (Datua stramonium L.) on seed germination of sorghum (Sorghum bicolor [L.] Moench), millet (Pennisetum glaucum [L.] R. Br.), maize (Zea mays L.) and wheat (Triticum vulgare L.) using probit analysis. Laboratory experiments were carried out at the Faculty of Agricultural Sciences, University of Gezira, Sudan in season 2014/15. Ten concentrations (4.62, 9.26, 13.87, 18.51, 23.12, 27.74, 32.36, 36.98, 41.61 and 46.28 g/l) of the seeds aqueous extract of D. stramonium were prepared from the stock solution (100 g / l). A control with sterilized-distilled water was included for comparison. Treatments were arranged in completely randomized design with four replicates. The seeds were examined for inhibition (%) in germination at three days after initial germination. Data were transformed using Abbott’s formula and subjected to probit analysis (P  0.5). The results showed that the seeds aqueous extract of D. stramonium inhibited the seed germination of the tested cereal crops and there was direct positive relationship between concentration (g/l) and inhibition (%). The results also showed that the seeds of wheat (LC50 = 22.6 g/l) were most sensitive to the seeds aqueous extract of thorn apple followed by the seeds of sorghum (LC50 = 26.5 g/l) and maize (LC50 = 27.9 g/l). However, the extract was less toxic to the seeds of millet (LC50 = 32.2 g/l). It was concluded that that the aqueous extract of thorn apple (D. stramonium L.) was phytotoxic to the seed germination of the tested cereal crops.

Keywords: Allelopathy; Datura; LC50; Poeaeae; sorghum; millet; maize; wheat


How to Cite this Article?

APA 6th edition
Dafaallah, A.B., Hussein, Y.H. & Mustafa, W.N. (2020). Phytotoxic Effects of Thorn apple (Datua stramonium L.) Seed Aqueous Extract on Seed Germination of some Cereal Crops Using Probit Analysis . International Journal of Innovative Approaches in Agricultural Research, 4(1), 89-98. doi: 10.29329/ijiaar.2020.238.10

Harvard
Dafaallah, A., Hussein, Y. and Mustafa, W. (2020). Phytotoxic Effects of Thorn apple (Datua stramonium L.) Seed Aqueous Extract on Seed Germination of some Cereal Crops Using Probit Analysis . International Journal of Innovative Approaches in Agricultural Research, 4(1), pp. 89-98.

Chicago 16th edition
Dafaallah, Awadallah Belal, Yasir H. Hussein and Waleed N. Mustafa (2020). "Phytotoxic Effects of Thorn apple (Datua stramonium L.) Seed Aqueous Extract on Seed Germination of some Cereal Crops Using Probit Analysis ". International Journal of Innovative Approaches in Agricultural Research 4 (1):89-98. doi:10.29329/ijiaar.2020.238.10.

References
  1. Abbott, W. S.  (1987). Classic Paper: Abbott's Formula: A Method of Computing the Effectiveness of an Insecticide. J. Am. Mosquito Contr., 3(2), 302-303. [Google Scholar]
  2. Altikat  S.,  I. Terzi,  H. I. Kuru and  I. Kocacaliskan (2013). Allelopathic  effects  of  juglone  on  growth  of cucumber  and  muskmelon  seedlings  with  respect  to antioxidant  enzyme  activities  and  lipid  peroxidation.  J. Environ. Prot. Ecol., 14(3), 1244-1253. [Google Scholar]
  3. Bikic, M., N. Suljic, N. Sarajlie and D. Gadzo (2017). Distribution of Jimsonweed (Datum stramonium L.) In: The City of Sarajevo. In: the 28th International Scientific-Expert Conference of Agriculture and Food Industry, 27-29 September, 2017, Sarajevo, Bosnia and Herzegovina. [Google Scholar]
  4. Chou, C. H. (1990). The role of allelopathy in agroecosystems: Studies from tropical Taiwan. In: Gliessman, S. R. (ed). Agroecology: Researching the ecological basis for sustainable agriculture. Ecological studies 1978. Springer - Verlag. Berlin, 105-121. [Google Scholar]
  5. Dragoeva, A. P., V.P. Koleva, Z. D. Nanova and B. P. Georgiev (2015) Allelopathic Effects of Adonis vernalis L.: Root growth inhibition and cytogenetic alterations. J. Agric. Chem. Environ., 04, 48-55. [Google Scholar]
  6. EL-Shora, H.M., M.A. EL-Gawad, A.M. EL-Shobaky and H. Taha (2018). Influence of Datura stramonium Leaf Extract on Antioxidants and Activities of metabolic enzymes of Trigonella foenum-graecum and Lepidium sativum. Int. J. Curr. Res. Acad. Rev., 6(2), 1-11. [Google Scholar]
  7. Farooq, M., K. Abran, Z.A. Cheema, A. Wahid and K.H. Siddique (2011). The role of allelopathy in agricultural pest management. Pest Manag. Sci., 67, 493-506. [Google Scholar]
  8. Farooq, M., K. Jabran, H. Rehman and M. Hussain (2008). Allelopathic effects of rice on seedling development in wheat, oat, barley and berseem.  Allelopathy J. 22, 385–390. [Google Scholar]
  9. Ivancheva, S., M. Nikolova and  R. Tsvetkova (2006). Pharmacological  activities  and  biologically  active compounds  of  Bulgarian  medicinal  plants. Phytochemistry: Adv. Res., 87-103. [Google Scholar]
  10. Jabran, K., M. Farooq, M. Hussain, H. Rehman and M. A. Ali (2010). Wild oat (Avena fatua L.) and canary grass (Phalaris minor Ritz.) management through allelopathy. J. Plant Protec. Res., 50, 32–35. [Google Scholar]
  11. Maibam, R. D., B. Meenakshi, S. B. Paul and G.D. Sharma (2011). Neurotoxic and medicinal properties of Datura stramonium L. - Review. Assam University Journal of Science & Technology: Biological and Environmental Sciences, 7(1), 139-144. [Google Scholar]
  12. Mushtaq, W. and M.B. Siddiqui(2018). Allelopathy in Solanaceae plants. J. Plant Protec. Res., 58 (1), 1-7. [Google Scholar]
  13. Nain, J., S. Bhatt, S. Dhyani and  N. Joshi  (2013). Phytochemical screening of secondary metabolites of Datura stramonium.  Int. J. Curr. Pharmaceut. Res., 5(2),151-153. [Google Scholar]
  14. Novak, N., M. Novak, K. Barić, M. Šćepanović and D. Ivić (2018). Allelopathic potential of segetal and ruderal invasive alien plants. J. Central Eur. Agric., 19(2), 408-422. [Google Scholar]
  15. Oljaca, S., M. Simic, S. Vrbnicanin, L. Stefanovic and D. Kovacevic (2002). Effect of density and plant position of Datura stramonium on maize productivity. Proc. 12th EWRS Symposium, Wageningen, Netherlands, 292-293. [Google Scholar]
  16. Oudhia, P. (1999). Allelopathic effects of some obnoxious weeds on germination of Melilotus alba. Legume Res., 22, 133–134. [Google Scholar]
  17. Oyun,  M. B.  (2006).  Allelopathic  potentialities  of  Gliricidium  sepium  and Acacia auriculiformis on the germination and seedling vigour of maize (Zea mays). Am. J. Agric. Biol. Sci., 1(3),44-47. [Google Scholar]
  18. Randhawa, M. A. (2009). Calculation of LD50 values from the method of Miller and Tainter, 1944. J. Ayub Med. Coll. Abbottabad, 21, 184 –185. [Google Scholar]
  19. Sakadzo, N., P. Innocent, M. Simbarashe, M. Ronald and M. Kasirayi (2018). Thorn apple (Datura stramonium L.) allelopathy on cowpeas (Vigna unguiculata L.) and wheat (Triticum aestivum L.) in Zimbabwe. Afr. J. Agric. Res., 13(29), 1460-1467. [Google Scholar]
  20. Scepanovic, M., N. Novak, K. Baric, Z. Ostojic, N. Galzina and M. Gorsic (2007). Alelopatski utjecaj korovnih vrsta Abutilon theophrasti Med. i Datura stramonium L. na pocetni razvoj kukuruza. Agronomski glasnik, 6, 459-472. [Google Scholar]
  21. Shagal, M.H., U. U. Modibbo and A. B. Liman (2012). Pharmacological justification for the ethnomedical use  of  Datura stramonium stem-bark  extract  in treatment  of diseases caused  by  some  pathogenic  bacteria.  Int. Res. Pharm.  Pharmacol., 2(1), 016-019. [Google Scholar]
  22. Ullah,  N., I.U. Haq,  N. Safdar  and  B. Mirza (2015). Physiological  and  biochemical  mechanisms  of allelopathy  mediated  by  the  allelochemical  extracts  of Phytolacca  latbenia  (Moq.)  H.  Walter.  Toxicol.  Ind. Health, 31(10), 931-937. [Google Scholar]
  23. Verma, S.K., S. Kumar, V. Pandey, R. K.Verma and D. D. Patra (2012). Phytotoxic effects of sweet basil (Ocimum basilicum L.) extracts on germination and seedling growth of commercial crop plants. Eur. J. Exp. Biol., (6), 2310-2316. [Google Scholar]