Pen Academic Publishing   |  e-ISSN: 2602-4772

Original article | International Journal of Innovative Approaches in Agricultural Research 2020, Vol. 4(1) 40-47

Mineral Nutrition and Lipids in Chenopodiaceous

Mahi Zineb

pp. 40 - 47   |  DOI: https://doi.org/10.29329/ijiaar.2020.238.5   |  Manu. Number: MANU-1910-29-0001.R1

Published online: March 29, 2020  |   Number of Views: 23  |  Number of Download: 134


Abstract

The environmental adaptation of the Chenopodiaceae (placed in Amaranthaceae s. l. in APG IV 2016) species is correlated with a physiological adaptation. Indeed, several species of this family are characterized by a C4 photosynthetic pathway. The aim of this work is to evaluate the lipid structure of two plant species of the genus Atriplex (halimus and canescens) in order to elucidate the effect of mineral nutrition on lipid peroxidation. Thus, the effect of three concentrations of Na Cl (100 300 and 600 mMl-1) was studied at the level of the two organs (roots and leaves) through the assay of Malondialdehyde (MDA) which represents a biomarker of lipid destruction. The results shows variability in the accumulation of MDA which indicate the variability of inter and intra specific responses. Nevertheless, the integrity of membrane lipids is little affected in both species and more in Atriplex halimus L.

 

Keywords: Mineral nutrition, lipids membrane, Malondialdehyde


How to Cite this Article?

APA 6th edition
Zineb, M. (2020). Mineral Nutrition and Lipids in Chenopodiaceous . International Journal of Innovative Approaches in Agricultural Research, 4(1), 40-47. doi: 10.29329/ijiaar.2020.238.5

Harvard
Zineb, M. (2020). Mineral Nutrition and Lipids in Chenopodiaceous . International Journal of Innovative Approaches in Agricultural Research, 4(1), pp. 40-47.

Chicago 16th edition
Zineb, Mahi (2020). "Mineral Nutrition and Lipids in Chenopodiaceous ". International Journal of Innovative Approaches in Agricultural Research 4 (1):40-47. doi:10.29329/ijiaar.2020.238.5.

References
  1. Acosta, J. A.,  A. Abbaspour, G.R. Martínez,S. Martínez-Martínez , R. Zornoza, M. Gabarrón     and A. Faz (2018). Phytoremediation of mine tailings with Atriplex halimus and organic/inorganic amendments: A five-year field case study. Chemosphere, 204, 71-78. [Google Scholar]
  2. Anjum, S. A, X. Xie, L-C. Wang, M. F. Saleem, C. Man and W. Lei (2011). Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res., 6 (9), 2026-2032. [Google Scholar]
  3. APG IV (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc., 181, 1–20. [Google Scholar]
  4. Ashraf,  M. and P. J. C. Harris (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Sci., 166 (1), 3‐16. [Google Scholar]
  5. Boualem, S., F. Boutaleb, A. Ababou and F. Gacem (2019). Effect of salinity on the physiological behavior of the olive tree (variety sigoise). J. Fundam. Appl. Sci. 11(1), 525-538. [Google Scholar]
  6.  Clemente, R., D. J. Walker, T. Pardo, D. Martínez-Fernández and M. P. Bernal (2012). The use of a halophytic plant species and organic amendments for the remediation of a trace elementscontaminated soil under semi-arid conditions, J. Hazard. Mater., 223–224, 63–71. [Google Scholar]
  7. Daud, M. K., H. Quiling, M. Lei, B. Ali and S. J. Zhu (2015). Ultrastructural, metabolic and proteomic changes in leaves of upland cotton in response to cadmium stress. Chemosphere, 120, 309‐320. [Google Scholar]
  8. Domrowski, J. E., (2003).  Salt stress activation of wound-related genes in tomato plants. Plant Physiol., 132,  2098 - 2107. [Google Scholar]
  9. Hernández, J. A., A. Jiménez, P. Mullineaux and F. Sevilia (2000). Tolerance of pea (Pisum sativum L.) to long‐term salt stress is associated with induction of antioxidant defences, Plant Cell Environ., 23 (8), 853‐862. [Google Scholar]
  10. Hernández, J. A. and M. S. Almansa (2002). Short‐term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol. Plant, 115 (2), 251‐257. [Google Scholar]
  11. Hichem, H., D. Mounir and E. A. Naceur (2009). Differential responses of two maize (Zea mays L.) varieties to salt stress: Changes on polyphenols composition of foliage and oxidative damages. Ind. Crop Prod., 30 (1), 144‐151. [Google Scholar]
  12. Kamal, Z, F.  Ullah, M. Ayaz, A. Sadiq, S. Ahmad, A. Zeb, A. Hussain and M. Imran (2015). Anticholinesterse and antioxidant investigations of crude extracts, subsequent fractions, saponins and flavonoids of atriplex laciniata L.: potential effectiveness in Alzheimer and other neurological disorders. Biol. Res., 48, 1–11. [Google Scholar]
  13. Kamal, Z., F. Ullah, S. Ahmad, M. Ayaz, A. Sadiq, M. Imran, S. Ahmad, F.U. Rahman, A. Zeb      (2017). Saponins and solvent extracts from Atriplex laciniata L. exhibited high anthelmintic and insecticidal activities. J. Tradit. Chin. Med., 37(5), 599–606. [Google Scholar]
  14. Ksouri, R., W. Megdiche, A. Debez, H. Falleh, C. Grignon and C. Abdelly (2007). Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritime. Plant Physiol. Biochem., 45, (3‐4),  244‐249. [Google Scholar]
  15. Liang, Y., J. Zhu, Z. Li, G. Chu, Y. Ding, J. Zhang and W. Sun (2008). Role of silicon in  enhancing resistance to freezing stress in two contrasting winter wheat cultivars.  Environ. Exp. Bot., 64 (3), 286‐294. [Google Scholar]
  16. Lin, D. and B. Xing (2007). Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ. Pollut., 150, 243–250. [Google Scholar]
  17. Mahi, Z., F. Dedaldechamp, L. Maurousse, R. Lemoine and M. Belkhodja (2015). Study of Lipid peroxidation (MDA) and antioxidative activity (POD) in two halophytes: Atriplex halimus L. and Atriplex canescens (Pursh) Nutt under salt effect. Int. J. Innov. Appl. Stud., 10 (1), 450‐458. [Google Scholar]
  18. Mahi, Z. (2017). Caracterisation Biochimique, Minerale et Anatomique d’Atriplex halimus et d’Atriplex canescens (Pursh) Nutt. sous stress salin. Thèse de Doctorat en Sciences, p.103. [Google Scholar]
  19. Miara MD, H. Bendif, M.A. Hammou, I. Teixidor-Toneu (2019). Ethnobotanical survey of medicinal plants used by nomadic peoples in the Algerian steppe. Journal of ethnopharmacology 219, 248-256 [Google Scholar]
  20. Mira, S., E. Estrelles, M. E.  Gonzalez-Benito and F. Corbineau (2011). Biochemical changes induced in seeds of Brassicaceae wild species during ageing. Acta Physiol. Plant Mol. Biol., 49, 249–279. [Google Scholar]
  21. Moradi, F. and A. M. Ismail (2007). Responses of photosynthesis, chlorophyll fluorescence and ROS‐scavenging systems to salt stress during seedling and reproductive stages in rice, Ann. Bot., 99 (6), 1161‐1173. [Google Scholar]
  22. Moreno, I, N. Tutrone , R. Sentandreu and E. Valentín  (2008). Saccharomyces cerevisiae Rds2 transcription factor inv olvement in cell wall composition and architecture. Int. Microbiol., 11(1), 57-63.  [Google Scholar]
  23. Qasima, M.,  Z. Abideen, M.Y. Adnana, S. Gulzar, B. Gul, M. Rasheed and M.A. Khan (2017). Antioxidant properties, phenolic composition, bioactive compounds and nutritive value of medicinal halophytes commonly used as herbal teas. South Afr. J. Bot., 110, 240–250. [Google Scholar]
  24. Romera, P., F. Fernandez –Illescas, F.J.J. Nieva, P. Rodriguez –Rubio, E.  Sanchez –Gullon and A. F. Munoz Rodriguez (2013).  Reproductive phenology and pre-dispernal fruit predation in Atriplex halimus L. (Chenopodiacea). Bot. Stud., 54, 4. [Google Scholar]
  25. Shalata, A., V. Mittova, M. Volokita, M. Guy and M. Tal (2001). Response of the cultivated tomato and its wild salt‐tolerant relative Lycopersicon pennellii to salt‐dependent oxidative stress: The root antioxidative system, Physiol. Plant, 112 (4), 487‐494. [Google Scholar]
  26. Tapia, Y., O. Diaz,  C. Pizarro,  R. Segura,  M. Vines, G. Zúñiga and E. Moreno-Jiménez (2013). Atriplex atacamensis and Atriplex halimus resist As contamination in Pre- Andean soils (northern Chile). Sci. Total Environ.  15 (450-451), 188-196. [Google Scholar]
  27.  Toumi, M., S. Barris and F. Aid (2014). Effets des stress hydrique et osmotique sur l’accumulation de proline et de malondialdehyde (MDA) chez deux variétés de colza (Brassica napus L.). Bulletin de l’Institut Scientifique, Rabat, Section Sciences de la Vie, 36, 17-24. [Google Scholar]
  28. Walker, D. J., S. Lutts, M. Sánchez‐García and E. Correal (2014). Atriplex halimus L.: Its biology and uses.  J. Arid Environ., 100 (101), 111‐121. [Google Scholar]
  29.  Zhang, H., H. Dong, W. Li, Y. Sun, S. Chen and X. Kong (2009). Increased glycine betaine synthesis and salinity tolerance in AhCMO transgenic cotton lines.  Mol. Breed., 23 (2), 289‐298. [Google Scholar]
  30. Zohra, T., M. Ovais , A.T. Khalil , M. Qasim , M.  Ayaz , Z.K.  Shinwari, S. Ahmad and M.  Zahoor (2019).  Bio-guided profiling and HPLC-DAD finger printing of Atriplex lasiantha Boiss,  BMC Complem. Altern. M., 19 (4), 1-14. [Google Scholar]