Pen Academic Publishing   |  e-ISSN: 2602-4772

Original article | International Journal of Innovative Approaches in Agricultural Research 2020, Vol. 4(1) 21-32

Genetic Variability, Heritability, and Genetic Advance for Ethanol Yield and Yield Components in Sweet Sorghum (Sorghum Bicolor Var. Saccharatum (L.)

Derya Yücel, Hatice Hızlı, Celal Yucel & Ismail Dweikat

pp. 21 - 32   |  DOI: https://doi.org/10.29329/ijiaar.2020.238.3   |  Manu. Number: MANU-1910-07-0002

Published online: March 29, 2020  |   Number of Views: 41  |  Number of Download: 169


Abstract

Sweet sorghum is a strong candidate for a cheap and renewable source of energy and play a vital role for the uplift of socio-economic status of the farmers of Turkey through the development of high yielding varieties along with a reasonable amount of fodder and biofuel production. The objective of this research was to evaluate the potential of sweet sorghum as a source for fodder and biofuel production, also the magnitude of genetic variability, heritability and genetic advance for yield and contributing characters of forty-nine sweet sorghum genotypes. The experiment was carried out in a randomized complete block design with four replications in Turkey.  Analysis of variance revealed that there are highly significant differences among the genotypes in all investigated traits indicating the presence of variability. The genotypes Smith and Batem-3 with high juice, sugar and ethanol yield can be used for breeding of biofuel production in the Mediterranean region of Turkey. High heritability accompanied with high genetic advance was observed for the flowering day, fresh biomass weight, stem fresh weight, juice volume, estimated sugar yield, and estimated ethanol yield. Therefore, these characters could be used for the development of high yielding sorghum varieties through selection in a breeding program.

Keywords: Phenotypic and genotypic coefficient of variation, sorghum, variability, additive gene action


How to Cite this Article?

APA 6th edition
Yucel, D., Hizli, H., Yucel, C. & Dweikat, I. (2020). Genetic Variability, Heritability, and Genetic Advance for Ethanol Yield and Yield Components in Sweet Sorghum (Sorghum Bicolor Var. Saccharatum (L.) . International Journal of Innovative Approaches in Agricultural Research, 4(1), 21-32. doi: 10.29329/ijiaar.2020.238.3

Harvard
Yucel, D., Hizli, H., Yucel, C. and Dweikat, I. (2020). Genetic Variability, Heritability, and Genetic Advance for Ethanol Yield and Yield Components in Sweet Sorghum (Sorghum Bicolor Var. Saccharatum (L.) . International Journal of Innovative Approaches in Agricultural Research, 4(1), pp. 21-32.

Chicago 16th edition
Yucel, Derya, Hatice Hizli, Celal Yucel and Ismail Dweikat (2020). "Genetic Variability, Heritability, and Genetic Advance for Ethanol Yield and Yield Components in Sweet Sorghum (Sorghum Bicolor Var. Saccharatum (L.) ". International Journal of Innovative Approaches in Agricultural Research 4 (1):21-32. doi:10.29329/ijiaar.2020.238.3.

References
  1. Almodares, A. and M.R. Hadi (2009). Production of bioethanol from sweet sorghum: a review. African J. Agric. Res., 4, 772-780. [Google Scholar]
  2. Bello, D., A.M. Kadams, S.Y. Simon and D.S. Mashi (2007). Studies on genetic variability in cultivated sorghum (Sorghum bicolor L. Moench) cultivars of Adamawa State Nigeria. American-Eurasian J. Agric. Environ. Sci., 2, 297-302. [Google Scholar]
  3. Bhushan, B., S.A. Bharti, M. Ojha, S.S. Pandey, B. Gourav, S. Tyagiand and G..Singh (2013). Genetic variability, correlation coefficient and path analysis of some quantitative traits in bread wheat. J. Wheat Res., 5, 24-29. [Google Scholar]
  4. Bunphan, D., P. Jaisil, J.E. Sanitchon Knoll and W.F. Anderson (2015). Estimation methods and parameter assessment for ethanol yields from total soluble solids of sweet sorghum. Indust. Crops Products, 63, 349-356. [Google Scholar]
  5. El Naim, M.A., M. Ibrahim, M.E.  Ibrahim, A. Rahman and A. Elshiekh (2012). Evaluation of some local sorghum (Sorghum Bicolor L. Moench) genotypes in rain-fed. I. J. Plant Res., 2, 15-20. [Google Scholar]
  6. Falconer, D.S. and T.F.C. Mackay (1996). Introduction to Quantitative Genetics. 4th Ed., Benjamin Cummings. England. 329 p.   [Google Scholar]
  7. Hanson, C.H., H.F. Robinson and R.E. Comstock (1956). Biometrical studies of yield in segregating populations of Korean lespedeza. Agron. J., 48, 268-272. [Google Scholar]
  8. IBM (2013) SPSS® Statistics™ Microsoft product screenshots reproduced with permission from Microsoft Corporation. Licensed Materials - Property of IBM © Copyright IBM Corp. U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. https://www.ibm.com/analytics/data-science/predictive-analytics/spss-statistical-software [Google Scholar]
  9. Johnson, H.W., H.F. Robinson and L.E. Comstock (1955). Genotypic and phenotypic correlation in soybean and their implication in selection. Agron J., 47, 477-483. [Google Scholar]
  10. Jalata, Z.,  A. Ayana and  H. Zeleke  (2011). Variability, heritability and genetic advance for some yield and yield related traits in Ethiopian barley (Hordeum vulgare L.) land races and Crosses. Int. J Plant Breed. Genet., 5, 44-52 [Google Scholar]
  11. Jain, S.K., M. Elangovan and N.V. Patel (2010). Correlation and path coefficient analysis for agronomical traits in forage sorghum [Sorghum bicolor (L.) Moench]. Indian J. Plant Genet. Resour., 23(1), 15-18. [Google Scholar]
  12. Murray, S.C., W.L. Rooney, M.T. Hamblin, S.E. Mitchell and S. Kresovich (2009). Sweet sorghum genetic diversity and association mapping for Brix and height. Plant Gen., 2, 48. [Google Scholar]
  13. Ou, M.S., D. Awasthi,  I. Nieves, L. Wang, J. Erickson, W. Vermerris, L.O. Ingram and K.T. Shanmugam (2016). Sweet sorghum juice and bagasse as feedstocks for the production of optically pure lactic acid by native and engineered Bacillus coagulans strains. Bioenergy Res., 9,123–131. [Google Scholar]
  14. Oyier, M.O., J.O. Owuoche, M.E. Oyoo, E. Cheruiyot, B. Mulianga and J. Rono  (2017). Effect of harvesting stage on Sweet sorghum (Sorghum bicolor L.) Genotypes in Western Kenya. Sci. World J., Article ID 8249532, 10 pages. [Google Scholar]
  15. Ranjith, P., Ghorade, R.B., Kalpande, V.V., Dange, A.M. (2017). Genetic variability, heritability and genetic advance for grain yield and yield components in sorghum. Int. J. of Farm Sci., 7 (1), 90-93. [Google Scholar]
  16. Ratnavathi, C.V.,  K. Suresh, B.S. Kumar, M. Pallavi, V.V. Komala and  N. Seetharama (2010). Study on genotypic variation for ethanol production from sweet sorghum juice. Biomass Bioenerg, 34, 947-952. [Google Scholar]
  17. Singh, R.K. and B.D. Chaudhary (1985). Biometrical methods in quantitative genetic analysis. Kalyani Publishers, New Delhi India pp. 253-260. [Google Scholar]
  18. Smith, G.A., M.O. Bagby, O. Lewellan, D.L. Doney, P.H. Moore, F.J. Hills, L.G. Campbell, G.J. Hogaboam, G.E. Coe, and K. Freeman (1987). Evaluation of sweet sorghum for fermentable sugar production potential. Crop Sci., 27, 788-793. [Google Scholar]
  19. Wang, L., M.S.  Ou, I. Nieves, J.E. Erickson, W. Vermerris, L.O. Ingram and K.T. Shanmugam (2015). Fermentation of sweet sorghum derived sugars to butyric acid at high titer and productivity by a moderate thermophile Clostridium thermo butyricum at 50◦C. Biores. Technol. 198, 533-539. [Google Scholar]
  20. Warkad, Y.N., N.R. Potdukhe, A.M. Dethe, P.A. Kahate and R.R. Kotgire (2008). Genetic variability, heritability and genetic advance for quantitative traits in sorghum germplasm. Agri. Sci. Digest., 28(3), 202-205. [Google Scholar]
  21. Yaqoob, M., N. Hussain and A. Rashid (2015). Genetic variability and heritability analysis for yield and morphological traits in sorghum (Sorghum bicolor L. Moench) genotypes. J. Agric. Res., 53(3), 331-343. [Google Scholar]
  22. Zou, G., S. Yan, G. Zhai, Z. Zhang, J. Zou and Y. Tao (2011). Genetic variability and correlation of stalk yield-related traits and sugar concentration of stalk juice in a sweet sorghum (Sorghum bicolor L. Moench) population. Aust. J. of Crop Sci., 5 (10), 1232-1238. [Google Scholar]