International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Review article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2019, Vol. 3(3) 510-528

Biochemical, Molecular and Morpho-Physiological Attributes of Wheat to Upgrade Grain Production and Compete with Water Stress

Saira Sattar, Rabail Afzal, Ikram Bashir, Bilal Nawaz & Aiman Shahid

pp. 510 - 528   |  DOI: https://doi.org/10.29329/ijiaar.2019.206.16

Published online: September 30, 2019  |   Number of Views: 208  |  Number of Download: 852


Abstract

Enhancing grain quality and quantity is going very perilous with the incessant climate changes and rising population. Under these circumstances, to review the current strategies and researches regarding biochemical, physiological, morphological and molecular perspectives gain more consideration. Hence, it’s important to have know-how related to this in different parts of the world to utilize possible stratagems to increase our current production. Wheat is one of this foremost considerable crop as it is food of 21% of the world population and 77% developing countries import and consume wheat annually. Wheat is primarily important in Pakistan as it is staple food but adversely affected because of water and heat stresses. By using the information and approaches of expertise, we can achieve our objectives of high yield and admirable quality. In most of countries, yield is less than the actual potential yield, this can be overcome by utilizing appropriate resources and proper techniques. Advance knowledge and extrapolative capabilities can help us to find out best possible tools to contribute in world food security and to withstand changing climatic conditions.

Keywords: Wheat, morpho-physiological aspects, molecular techniques, Grain yield, Water stress


How to Cite this Article

APA 6th edition
Sattar, S., Afzal, R., Bashir, I., Nawaz, B. & Shahid, A. (2019). Biochemical, Molecular and Morpho-Physiological Attributes of Wheat to Upgrade Grain Production and Compete with Water Stress . International Journal of Innovative Approaches in Agricultural Research, 3(3), 510-528. doi: 10.29329/ijiaar.2019.206.16

Harvard
Sattar, S., Afzal, R., Bashir, I., Nawaz, B. and Shahid, A. (2019). Biochemical, Molecular and Morpho-Physiological Attributes of Wheat to Upgrade Grain Production and Compete with Water Stress . International Journal of Innovative Approaches in Agricultural Research, 3(3), pp. 510-528.

Chicago 16th edition
Sattar, Saira, Rabail Afzal, Ikram Bashir, Bilal Nawaz and Aiman Shahid (2019). "Biochemical, Molecular and Morpho-Physiological Attributes of Wheat to Upgrade Grain Production and Compete with Water Stress ". International Journal of Innovative Approaches in Agricultural Research 3 (3):510-528. doi:10.29329/ijiaar.2019.206.16.

References
  1. Akram, M (2011). Growth and yield components of wheat under water stress of different growth stages. Bangladesh J. Agril. Sci., 36, 455-468. [Google Scholar]
  2. Ali, A., N. Ali, N. Ullah, F. Ullah, M. Adnan and Z. Ahmed (2013). Effect of drought stress on the physiology and yield of the pakistani wheat germplasms. Int. J. Adv. Res. Tech., 2 (7), 419-430. [Google Scholar]
  3. Aliyev, J. (2012). Physiological and molecular bases of drought tolerance in wheat (Triticum L.) genotypes. Environ. Sci. Technol., 2, 47-95. [Google Scholar]
  4. Almeselmani, M., F. Abdullah, F. Hareri, M. Naaesan, M.A. Ammar, O. ZuherKanbar and A.A. Saud (2011). Effect of drought on different physiological characters and yield component in different varieties of Syrian durum wheat. J. Agric. Sci., 3, 127. [Google Scholar]
  5. Al-Naggar, A.M.M., Kh.F. Al-Azab, S.E. S. Sobieh and M.M.M. Atta (2015). Morphological and SSR assessment of putative drought tolerant M3 and F3 families of wheat (Triticum aestivum L.). Brit. Biotech. J., 6, 174-190.  [Google Scholar]
  6. Anwar. J., M. Akbar, M. Hussain, S. Asghar, J. Ahmad and M. Owais (2011). Combing ability estimates for grain yield in wheat. Pak. J. Bot., 43(3), 1527-1530. [Google Scholar]
  7. Aslam, R., M. Munawar and A. Salam (2014). Genetic architecture of yield components accessed through line × tester analysis in wheat (Triticum aetivum L.). Universal J. Plant. Sci., 2(5), 93-96. [Google Scholar]
  8. Bentahar, S., A. Djekoun and N. Ykhlef (2015).  Morpho-physiological markers associated with Water Use Efficiency in Algerian durum wheat at different water regimes. Int. J. of Adv. Res., 3 (10), 875-888. [Google Scholar]
  9. Biesaga-Koscielniak J, Ostrowska A, Filek M, Dziurka M, Waligórski P, Mirek M, Koscielniak J. 2014. Evaluation of spring wheat (20 varieties) adaptation to soil drought during seedlings growth stage. J. Agron., 4, 96-112. [Google Scholar]
  10. Blum, A. (2015). Drought resistance, water-use efficiency, and yield potential - are they compatible, dissonant, or mutually exclusive. Austr. J. Agric. Res., 56, 1159-1168. [Google Scholar]
  11. Boutraa, T., A. Akhkha, A.A. Al-Shoaibi and A. M. Alhejeli (2010). Effect of water stress on growth and water use efficiency (WUE) of some wheat cultivars (Triticum durum) grown in Saudi Arabia. Journal of Taibah University for Science, 3, 39-48. [Google Scholar]
  12. Chaves, M. M., J. P. Maroco and J. S. Pereira (2003). Understanding plant responses to drought: from genes to the whole plant. Functional Plant Biology, 30, 239-264. [Google Scholar]
  13. Delphine, F., J. Stephen, K. Haydn and L. Peter (2010).  Genetic and genomic tools to improve drought tolerance in wheat. J. Exp. Bot., 61(12), 3211–3222. [Google Scholar]
  14. Dolferus, R., S. Thavamanikumar, H.  Sangma, S. Kleven, X. Wallace, K. Forrest and G. Rebetzke (2019). Determining the Genetic Architecture of Reproductive Stage Drought Tolerance in Wheat Using a Correlated Trait and Correlated Marker Effect Model. G3: Genes, Genomes, Genetics, 9(2),  473-489. [Google Scholar]
  15. Fellahi, Z.E.A., A. Hannachi, H. Bouzerzour and A. Boutekrabt (2013). Line × tester mating design analysis for grain yield and yield related traits in bread wheat (Triticum aestivum L.). Int. J. Agron. 2013. [Google Scholar]
  16. Gosal, S., S. Wani and M. Kang (2009). Biotechnology and Drought Tolerance. J. Crop Impr., 23(1), 19-54. [Google Scholar]
  17. Hammad, S.A., and O. A. Ali (2014). Physiological and biochemical studies on drought tolerance of wheat plants by application of amino acids and yeast extract. Ann. Agric. Sci., 59, 133-145. [Google Scholar]
  18. Hoisington, D., N. Bohorova, S. Fennel, M. Khairallah, A. Pellegrineschi, J.M. Ribaut (2019). The application of biotechnology to wheat improvement., http://www.fao.org/3/Y4011E/y4011e0d.htm [Google Scholar]
  19. Ihsan, M. Z., F. S. El-Nakhlawy, S.M. Ismail, S. Fahad and I. Daur (2016). Wheat phenological development and growth studies as affected by drought and late season high temperature stress under arid environment. Front. Plant Sci., 7, 795. [Google Scholar]
  20. Iftikhar, R., I. Khaliq, M. Kashif, M. Ahmad and S. Ullah (2012). Study of morphological traits affecting grain yield in wheat (Triticum aestivum L.) under field stress condition. Middle-East J. Sci. Res., 11, 19-23. [Google Scholar]
  21. Istipliler, D., E. Ilkher, F. Aykuttonk, G. Civi, and M. Tosun (2015). Line × tester analysis andestimating combining abilities for yield and some yield components in bread wheat. Turk. J. Field Crops., 20(1), 72-77. [Google Scholar]
  22. Iqbal, J. (2019). Morphological, Physiological and Molecular Markers for the adaptation of Wheat in drought Condition. Asian J. Biotech.  Genet. Eng., 2(1), 1-13. [Google Scholar]
  23. Jatoi, W., M. Baloch, M. Kumbhar, N. Khan and M. Kerio (2011). Effect of water stress on physiological and yield parameters at anthesis stage in elite spring wheat cultivars. Sarhad J. Agric., 27, 59-65. [Google Scholar]
  24. Jalal-ud-din, S.U.K. and I. Ali (2009). Physiological assessment of drought tolerance in wheat (Triticum aestivum L.) varieties under moisture stress conditions. Biologia (Pakistan) 55, 1-9. [Google Scholar]
  25. Ji, X., B. Shiran, J. Wan, D.C. Lewis, C. L. Jenkins and A.G.  Condon (2010). Importance of pre‐anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. Plant. Cell. Environ., 33, 926-942. [Google Scholar]
  26. Kandic, V., D. Dodig, M. Jovic, B. Nikolic and S. Prodanovic (2009). The importance of physiological traits in wheat breeding under irrigation and drought stress. Genetika, 41, 11-20. [Google Scholar]
  27. Khan, N. and F. Naqvi (2011). Effect of water stress in bread wheat hexaploids. Current Res. J. Biol. Sci., 3, 487-498. [Google Scholar]
  28. Kilic, H. and T. Yagbasanlar (2010). The effect of drought stress on grain yield, yield components and some quality traits of durum wheat (Triticum turgidum ssp. durum) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38, 164. [Google Scholar]
  29. Kong, L., F. Wang, B. Feng, S. Li, J. Si and B. Zhang (2010). The structural and photosynthetic characteristics of the exposed peduncle of wheat (Triticum aestivum L.): an important photosynthate source for grain-filling. BMC Plant Biology, 10, 141. [Google Scholar]
  30. Kulkarni, M., R. Soolanayakanahally, S. Ogawa, Y. Uga, M. Selvaraj and S. Kagale (2017). Drought response in wheat: key genes and regulatory mechanisms controlling root system architecture and transpiration efficiency. Front Chem., Dec 5;5:106. [Google Scholar]
  31. Liu, S., X. Li, D. H. Larsen, X. Zhu, F. Song and F. Liu (2017). Drought priming at vegetative growth stage enhances nitrogen‐use efficiency under post‐anthesis drought and heat stress in wheat. J. Agron. Crop Sci., 203, 29-40. [Google Scholar]
  32. Lohithaswa, H., S. Desai, R. Hanchinal, B. Patil, K. Math, I. Kalappanavar, T. Bandivadder and C. Chandrashekhara (2013). Combining ability in tetraploid wheat for yield, yield attributing traits, quality and rust resistance over environments. Karnataka J. Agri. Sci., 26(2), 190-193. [Google Scholar]
  33. Monneveux, P., R. Jing and S. C. Misra (2012). Phenotyping for drought adaptation in wheat using physiological traits. Front. Physiol., 16 November 2012. [Google Scholar]
  34. Mahpara, S., Z. Ali and M. Ahsan (2008). Combining ability analysis for yield and yield related traits among wheat varieties and their F1 hybrids. Int. J. Agri. Biol., 10(6), 599-604. [Google Scholar]
  35. Mehraj, H., A. Nahiyan, T. Taufique, I. Shiam and A. J. Uddin (2014). Growth and yield response of twenty-four wheat lines. Int. J. Bus. Soc. Sci. Res., 2, 121-126. [Google Scholar]
  36. Mirbahar, A.A., G. Markhand, A.  Mahar, S. A. Abro and N. A. Kanhar (2009). Effect of water stress on yield and yield components of wheat (Triticum aestivum L.) varieties. Pak. J. Bot., 41, 1303-1310. [Google Scholar]
  37. Mwadzingeni, L., H. Shimelis, S. Tesfay  and T. Tsilo (2016). Screening of Bread Wheat Genotypes for Drought Tolerance Using Phenotypic and Proline Analyses. Front. Plant Sci., 7. [Google Scholar]
  38. Nawaz, R., H. Inamullah, S. Ahmad, S. Ud Din and  M.S.Iqbal (2013). Agromorphological studies of local wheat varieties for variability and their association with yield related traits. Pak. J. Bot., 45, 1701-1706. [Google Scholar]
  39. Nezhadahmadi, A., Z. H. Prodhan and G. Faruq (2013). Drought tolerance in wheat. The Scientific World J. (2013). Article ID 610721, 12 p. [Google Scholar]
  40. Noorka, I.R. and J.A.T. Da Silva (2014). Physical and morphological markers for adaptation of drought-tolerant wheat to arid environments. Pak. J. Agri. Sci., 51, 943-952. [Google Scholar]
  41. Oyewole C. 2016. THE WHEAT CROP. 10.13140/RG.2.2.13776.92164. [Google Scholar]
  42. Quarrie, S.A., V. Lazic-Jancic, D. Kovacevic, A. Steed and S. Pekic (1999). Bulk segregant analysis with molecular markers and its use for improving drought resistance in maize. J. Exp. Bot. 50 (337), 1299-1306. [Google Scholar]
  43. Razzaq, A., Q. Ali, A. Qayyum, I. Mahmood, M. Ahmad and M. Rashid (2013). Physiological responses and drought resistance index of nine wheat (Triticum aestivum L.) cultivars under different moisture conditions. Pak. J. Bot., 45, 151-155. [Google Scholar]
  44. Rahman, M., N. Barma, B. Biswas, A. Khan and J.  Rahman (2016). Study on morpho-physiological traits in spring wheat (Triticum aestivum L.) Under rainfed condition. Bangladesh J. Agric. Res., 41, 235-250. [Google Scholar]
  45. Rebetzke, G., D. Bonnett and M. Reynolds (2016). Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat. J. Exp. Bot., 67, 2573-2586. [Google Scholar]
  46. Reynolds, M., J. Foulkes, R. Furbank, S. Griffiths, J. King and E. Murchie (2012). Achieving yield gains in wheat. Plant Cell Environ., 35, 1799-1823. [Google Scholar]
  47. Shamsi, K. and S. Kobraee (2011). Bread wheat production under drought stress conditions. Ann. Biol. Res., 2, 352-358. [Google Scholar]
  48. Saeidi, M., S. Ardalani, S.J. Honarmand, M. E. Ghobadi and M. Abdoli (2015). evaluation of drought stress at vegetative growth stage on the grain yield formation and some physiological traits as well as fluorescence parameters of different bread wheat cultivars. Acta Biol. Szeged., 59, 35-44. [Google Scholar]
  49. Saira, S., B. Nawaz, A. Tahir, A. Ahmed, M. Naeem, M. Z. Ghouri and M.  Jamshaid (2018). Gene action and combining ability analysis of quantitative traits associated with grain yield in wheat under drought stress and normal irrigation conditions. G.J.B.B., 7(4), 642, 650. [Google Scholar]
  50. Salman, S., M. Kashif, M. Y. Ashraf and U. Saleem (2017). Assessment of genetic effects of some physiological parameters in spring wheat under water stress. Pak. J. Bot. 49(6), 2133-2137. [Google Scholar]
  51. Szucs, A., K. Jager, M.E. Jurca, A. Fabian, S. Bottka  and A. Zvara (2010). Histological and microarray analysis of the direct effect of water shortage alone or combined with heat on early grain development in wheat (Triticum aestivum). Physiol. plantarum, 140, 174-188. [Google Scholar]
  52. Tambussi, E., J. Bort  and J. Araus (2007). Water use efficiency in C3 cereals under Mediterranean conditions: a review of physiological aspects. Ann. Appl. Biol., 150, 307-321. [Google Scholar]
  53. Turner, N.C. (1986). Adaptation to water deficits: a changing perspective. Aust. J. Plant Physiol. 13, 175-190. [Google Scholar]
  54. Vassilev, V., K. Demirevska, L. Simova‐Stoilova, T. Petrova, N. Tsenov and F. Feller (2012). Long‐term field drought affects leaf protein pattern and chloroplast ultrastructure of winter wheat in a cultivar‐specific manner. J. Agron. Crop Sci., 198, 104-117. [Google Scholar]
  55. Vikram, P., J. Franco, F. J. Burgueño, H. Li, D. Sehgal and C. Saint Pierre (2016). Unlocking the genetic diversity of Creole wheats. Scientific reports 6. [Google Scholar]
  56. Wajid, A., K. Hussain, M. Maqsood, A. Ahmad and A. Hussain (2007). Influence of drought on water use efficiency in wheat in semi-arid regions of Punjab. Soil  Environ., 26, 64-68. [Google Scholar]
  57. Veesar, N., A. Channa, M. Rind and A. Larik (2007). Influence of water stress imposed at different stages on growth and yield attributes in bread wheat genotypes Triticum aestivum L. Wheat Information Service, 104, 15-19. [Google Scholar]
  58. Yadav, S., N. Sandhu, R.R. Majumder (2019). Evaluation of genetic diversity in drought tolerant and sensitive varieties of wheat using ISSR markers. Electronic Journal of Plant Breeding. [Google Scholar]
  59. Zare, M., H. Parvizi, S. Sharafzadeh, A. Azarpanah, A. Branch and I. Arsanjan (2015). Evaluation of wheat cultivars under various irrigation methods based on some agronomic and physiological traits. J. Glob. Biosci., 4, 1327-1334. [Google Scholar]