Pen Academic Publishing   |  e-ISSN: 2602-4772

Original article | International Journal of Innovative Approaches in Agricultural Research 2019, Vol. 3(3) 365-375

Biochemical Composition of Root Mass of Healthy and Damaged by the Larva of Plagionotus floralisPall. (Coleoptera: Cerambycidae) Alfalfa (Medicagosativa L.) Plants

Evgeniya Zhekova

pp. 365 - 375   |  DOI:   |  Manu. Number: MANU-1809-13-0005

Published online: September 30, 2019  |   Number of Views: 31  |  Number of Download: 224


Alfalfa (Medicago sativa L.) is a preferred host for a large number of arthropods. The large diversity of harmful entomofauna is a serious difficulty in its cultivation. The aim of the study is to investigate the impact of damages caused by the larvae of alfalfa longhorn beetle (Plagionotus floralis Pall.) on the biochemical composition of the roots of alfalfa plants of different variety and age. Standard methods were used to carry out the field experiments in order to define the damages and the laboratory biochemical analyzes. It was found that significant changes in the composition of important organic compounds and chemical elements occurred in the root mass of the damaged plants during the years. In the roots of the damaged plants, the composition of water-soluble sugars and saponins decreased the amount of raw protein, raw fibers, phenols and calcium increased, whereas difference was not found in dry matter, phosphorus and magnesium content, compared to healthy plants.

Keywords: alfalfa, Plagionotus floralis, biochemical changes, root mass

How to Cite this Article?

APA 6th edition
Zhekova, E. (2019). Biochemical Composition of Root Mass of Healthy and Damaged by the Larva of Plagionotus floralisPall. (Coleoptera: Cerambycidae) Alfalfa (Medicagosativa L.) Plants . International Journal of Innovative Approaches in Agricultural Research, 3(3), 365-375. doi: 10.29329/ijiaar.2019.206.2

Zhekova, E. (2019). Biochemical Composition of Root Mass of Healthy and Damaged by the Larva of Plagionotus floralisPall. (Coleoptera: Cerambycidae) Alfalfa (Medicagosativa L.) Plants . International Journal of Innovative Approaches in Agricultural Research, 3(3), pp. 365-375.

Chicago 16th edition
Zhekova, Evgeniya (2019). "Biochemical Composition of Root Mass of Healthy and Damaged by the Larva of Plagionotus floralisPall. (Coleoptera: Cerambycidae) Alfalfa (Medicagosativa L.) Plants ". International Journal of Innovative Approaches in Agricultural Research 3 (3):365-375. doi:10.29329/ijiaar.2019.206.2.

  1. REFERENCES [Google Scholar]
  2. AOAC (2007). Official methods of analysis (17th ed). Association of analytical chemists, Gaithersburg, Maryland, USA [Google Scholar]
  3. Avice, J.C., A. Ourry, G. Lemaire, J.J. Volenec and J. Boucaud (1997). Root protein and vegetative storage protein are key organic nutrients for alfalfa shoot regrowth. Crop Sci., 37, 1187–1193. [Google Scholar]
  4. Bickoff, E.M., G.O. Kohler and D. Smith (1972). Chemical composition of herbage. Alfalfa Science and Technology. American Society of Agronomy, Madison, Wisconsin, USA. [Google Scholar]
  5. Castellanos, I. and F. J. Espinosa-Garcia (1997).  Plant Secondary Metabolite Diversity as a Resistance Trait against insects: a Test with Sitophilus granarius (Copeoptera: Curcilionidae) and Seed Secondary Metabolites. Biochem. Syst. Ecol., 25(7), 591-602. [Google Scholar]
  6. Dimova, D. and E. Marinkov (2005). Experimental design and biometrics. Academic Publishing House of the Agrarian University, Plovdiv. [Google Scholar]
  7. Dytham, C. (2003). Choosing and Using Statistics. A Biologist'Guide, Second Edition, Blackwell Publishing company, London, p. 248.  [Google Scholar]
  8. Edreva, A. (1989). Metabolic responses of a tobacco plant in pathogenic and abiotic stresses. DSc thesis, Sofia. [Google Scholar]
  9. Ermakov, A., V. Arasimovich, N. Yarosh, Yu. Peruansky, G. Lukovnikova and M. Ikonomova (1987). Methods of biochemical research of plants. Agropromizdat, Moscow, pp. 134-135. [Google Scholar]
  10. Georgieva, N., I. Nikolova and A. Ilieva (2012). Biochemical composition of root mass in alfalfa varieties. Bulg. J. Crop Sci., 49(3), 20-25 [Google Scholar]
  11. Gorski, P. M., J. Miersch and M. Ploszynski (1991). Production and Biological Activity of Saponins and Canavanine in Alfalfa Seedling. Journal of Chemical Ecology, Vol. 17, pp. 1135-1143. [Google Scholar]
  12. Ilieva, A. (1996). Study of biological activity of alfalfa saponines in different alfalfa entries (Medicago ssp.). PhD thesis, Pleven. [Google Scholar]
  13. Jurzysta, M. (1979). Haemolytic micromethod for rapid astimation of toxic alfalfa saponines. Acta Agrobot., 32 (1), 5-11. [Google Scholar]
  14. Kemenesy, E. and G. Manninger (1968). Die Luzerne anbau und pflanzenschutz. Budapest, 163-164. [Google Scholar]
  15. Kunkel, H. O., P. B. Pearson and B. S. Schweigert (1947). The photoelectric determination of magnesium in body fluids. J. Lab. Clin. Med., 32, 1027-1038. [Google Scholar]
  16. Kutchan, T. M. (2001). Ecological Arsenal and Development Dispatcher: The Paradigm of Secondary Metabolism. Plant Physiol., 125, 58-60. [Google Scholar]
  17. Lacefield, G., J. Henning, M. Rasnake and M. Collins (1997). Alfalfa The Queen of Forage Crops. Univversity of Kentucky, Cooperative Extension Service, AGR-76. [Google Scholar]
  18. Lattanzio, V., V.M.T. Lattanzio and A. Cardinali (2006). Phytochemistry: Advances in Research, p. 67.  [Google Scholar]
  19. Makarov, М. (1968). Alfalfa longhorn beetle. Rastitelna zashtita, 2, 13-18. [Google Scholar]
  20. Nicholson, R. and R. Hammerschmidt (1992). Phenolic Compounds and Their Role in Disease Resistance. Ann. Rev. Phytopathol, 30, 369-389.  [Google Scholar]
  21. Nikolova, I. and D. Kertikova (2008). Comparative evaluation of Lucerne accessions according to degree of attack by some soil insect pests. J. Mt. Agric. Balk., 11(1),  48-59. [Google Scholar]
  22. Nikolova, I., N. Georgieva and A. Ilieva (2012). Otiorrhynchus ligustici L. (Coleoptera: Curculionidae) II. Method for determination of the degree of damage by larva and biochemical composition of the root system in different alfalfa varieties. Banat′s J. Biotechnol., 3 (2), 75-80.  [Google Scholar]
  23. Nikolova, I., N. Georgieva and A. Ilieva (2015). Chemical composition of above-ground dry mass in alfalfa varieties and correlations to the preference of Apion seniculus Kirby (Coleoptera: Curculionidae). Proc. Union of scientists–Rousse. Series “Agrarian and veterinary-medical sciences”, 7, 223–228. [Google Scholar]
  24. Nikolova, I., N. Georgieva and Y. Naydenova (2017). Forage quality and energy feeding value estimation of alfalfa (Medicago sativa L.) in integrated pest management. J. Mt. Agric. Balk.,  20(3),  46-56. [Google Scholar]
  25. Nowacka, J. and W. Oleszek (1994). Determination of alfalfa (Medicago sativa) saponins by high performance liquid chromatography. J. Agric. Food Chem., 42, 727. [Google Scholar]
  26. Nozzolollo, C., J.T. Arnason, F. Campos, N. Donskov and M. Jurzysta (1997). Alfalfa leaf saponins and insect resistance. J. Chem. Ecol., 23 (4), 995-1002. [Google Scholar]
  27. Pedersen, M., D. Barnes, E. Sorensen, G. Griffin, M. Nielson, R. Hill, F. Frosheiser, R. Sonoda, C. Hanson, O. Hunt, R. Peaden, J. Elgin, T. Devine, M. Anderson, B. Goplen, L. Elling and R. Howarth (1976). Effects of low and high saponin selection in alfalfa on agronomic and pest resistance traits and the interrelationship of these traits. Crop Sci., 16(2), 193-199.  [Google Scholar]
  28. Petkova, D., D. Dzhukich. Il. Ivanova, D. Marinova and A. Ilieva (2005). Productive abilities of alfalfa germplasms and health status of their root system. Proc. Union of scientists–Rousse. Series “Agrarian and veterinary-medical sciences”, 5, 126–130. [Google Scholar]
  29. Sandev, S. (1979). Chemical Methods for Analysis of Feeds, Zemizdat, Sofia [Google Scholar]
  30. Shanin, Y. (1977). Methodology of field trial. Bulgarian Academy of Sciences, Sofia, 96-97. [Google Scholar]
  31. SPSS 16.0 for Windows. IBM SPSS Software. Web (online). Accessed at [Google Scholar]
  32. Sutherland, O., R. Hutchins and W. Greenfield (1982). Effect of Lucerne saponins and Lotus condensed tannins on survival of grass grub, Castelytra zealandica. New Zeal. J. Zool., 9, 511-514. [Google Scholar]
  33. Swain, T. (1977). Secondary compounds as protective agents. Ann. Rev. Plant Physiol. 28, 479-501. [Google Scholar]
  34. Swain, T. and W. Hillis (1959). The phenolic constituents of Prunus domestica. J. Sci. Food Agric., 10, 3-68. [Google Scholar]
  35. Sylwia, G., B. Leszczynski and O. Wieslaw (2006). Effect of low and high-saponin lines of alfalfa on pea aphid. J. Insect Physiol., 52, 737-743 [Google Scholar]
  36. Tava, A. and M. Odoardi (1996). Saponins from Medicago spp.: Chemical characterization and biological activity against insects. Soponin Used in Food and Agriculture. Adv. Exp. Med. Biol., 405, 97-109. [Google Scholar]
  37. Theis, N. and M. Lerdau (2003). The Evolution of Function in Plant Sci., 164 (3 Suppl.), 93-102. [Google Scholar]
  38. Veronesi, F., Ch., Brummer and Ch. Huyghe (2010). Alfalfa. Fodder crops and amenity grasses. Handbook of Plant Breeding, 5, 395-437. [Google Scholar]
  39. Winkel-Shirley, B. (1998). Flavonoids in seeds and grains: physiological function, agronomic importance and the genetics of biosynthesis. Seed Sci. Res., 8(4), 415-422.  [Google Scholar]
  40. Winkel-Shirley, B. (2002). Biosynthesis of flavonoids and effect of stress. Curr. Opin. Plant Biol., 5,  218-223. [Google Scholar]
  41. Yazdi-Samadi, B., M. Bagheri and H. Mazahery-Laghab (2004). Saponins in alfalfa and their relationships with alfalfa weevil resistance. Proceedings of the 4th International Crop Science Congress, Brisbane, Australia. [Google Scholar]