Pen Academic Publishing   |  e-ISSN: 2602-4772

Original article | International Journal of Innovative Approaches in Agricultural Research 2019, Vol. 3(2) 299-314

Salt Effect on Biochemical Behavior Fodder Halophytes

Mahı Zıneb, Maurousset Laurence, Belkhodja Moulay & Lemoine Rémi

pp. 299 - 314   |  DOI: https://doi.org/10.29329/ijiaar.2019.194.15   |  Manu. Number: MANU-1809-01-0004

Published online: June 30, 2019  |   Number of Views: 11  |  Number of Download: 66


Abstract

Atriplex halimus L., endemic to the Mediterranean region and Atriplex canescens (Pursh) Nutt. endemic to the American regions introduced in Algeria are two halophytes of semi-arid to arid regions. Salinity tolerance to NaCl (100, 300 and 600 mM.l-1) of Oran population of halimus L. and El Bayadh population of canescens (Pursh) Nutt. is analyzed. The parameters studied are Na++, K+, Ca++, Mg++ and Cl- . These are studied using two t methods (flame spectrophotometry and microanalysis EDX). In response to NaCl stress, the contents of Ca++ and K+ decrease. However, at low salt concentrations, Ca++ accumulates in the stems and leaves of halimus L. and only in the plant roots of canescens (Pursh) Nutt.. However, the leaves become less and less rich in K+, Mg++ under all salinity treatments in all organs of both species. Na+ accumulates in large amounts in the leaves. However, this accumulation slows down under the effect of salt beyond 300 mM.l-1 in canescens (Pursh) Nutt. while the load in this cation increases in the stems and roots. Therefore, halimus L. is one halophyte of "includer" type whereas canescens (Pursh) Nutt. is "includer" one at concentrations low or equal to 300 mM.l-1. But at 600 mM.l-1, the plant changes to become an"excluder" halophyte. This change in the type can be a way to avoid the harmful effects of stress resulting from ionic salt stress in this species. On the other hand, microanalysis (EDX) shows that the Ca++ and Na+ are two essential elements of halimus L. roots and that only Ca++ is for canescens (Pursh) Nutt.. At the level of leaves, Na+ and Cl- essentially characterize halimus L. However, for plants of canescens (Pursh) Nutt., K+ and Cl- are dominant. Na+ then represents the specific component of the roots and leaves of halimus L. and K+ represents the specific element of canescens (Pursh) Nutt. leaves.

Keywords: Atriplex, halophytes, cation, salt stress.


How to Cite this Article?

APA 6th edition
Zineb, M., Laurence, M., Moulay, B. & Rémi, L. (2019). Salt Effect on Biochemical Behavior Fodder Halophytes . International Journal of Innovative Approaches in Agricultural Research, 3(2), 299-314. doi: 10.29329/ijiaar.2019.194.15

Harvard
Zineb, M., Laurence, M., Moulay, B. and Rémi, L. (2019). Salt Effect on Biochemical Behavior Fodder Halophytes . International Journal of Innovative Approaches in Agricultural Research, 3(2), pp. 299-314.

Chicago 16th edition
Zineb, Mahi, Maurousset Laurence, Belkhodja Moulay and Lemoine Rémi (2019). "Salt Effect on Biochemical Behavior Fodder Halophytes ". International Journal of Innovative Approaches in Agricultural Research 3 (2):299-314. doi:10.29329/ijiaar.2019.194.15.

References
  1. Albenisio J., G. Silveira, S. Alexandre, M. Araújo, J. P. M. S. Lima and R.A. Viégas, (2009). Roots and leaves display contrasting osmotic adjustment mechanisms in response to NaCl-salinity in Atriplex nummularia. Environmental and Experimental Botany, 66 (1), 1–8. [Google Scholar]
  2. Belkheiri O., M. Mulas, 2013- The effects of salt stress on growth, water relations and ion accumulation in two halophyte atriplex species. Environ. Exp. Bot., 86, 17-28. [Google Scholar]
  3. Belkhodja M., Y. Bidai, 2007- Analyse de la proline pour l’étude de la résistance d’une halophyte (Atriplex halimus L.) à la salinité. Tela Botanica, 8p. [Google Scholar]
  4. Ben Ahmed H., D. Ben Ammar, E. Zid (2008). Physiology of salt tolerance in Atriplex halimus L.in Biosaline Agriculture and High Salinity Tolerance, Edted by Chedly Abdely, Münir Ôztûrk, Muhammad Ashrat and Claude Grignon. Birkhâuser Verlag/Switzerland. [Google Scholar]
  5. Benzarti B. R. K., D. Messedi, A. Benmna, K. Hessini, M. Ksontini, C. Abdelly, A. [Google Scholar]
  6. Debez (2014). Effect of high salinity on Atriplex portulacoides: Growth, leaf water relations and solute accumulation in relation with osmotic adjustment. South African Journal of Botany, 95, 70–77. [Google Scholar]
  7. Duarte, B., D. Santos, I. Caçador (2013a). Halophyte anti-oxidant feedback seasonality in two salt marshes with different degrees of metal contamination: search for an efficient biomarker. Funct. Plant Biol., 40, 922–930. [Google Scholar]
  8. Flowers T.J, D. Dalmond (1992). Protein- synthesis in halophytes-the influence of potassium, sodium and magnesium in vitro. Plant and Soil, 146, 153–161. [Google Scholar]
  9. Flowers T.j., Ar. Yeo (1986) Ion relations of plants under drought and salinity. Aust J Plant Physiol 13, 75–91 [Google Scholar]
  10. Garza Aguirre R. A., J. Hernandez Piñero, A. R. Estrada, R. F. Pournavab, S. M. Limon (2015). Microanalysis of leaves of Atriplex canescens (Pursh) Nutt. under saline conditions. Int J Farm & Alli. Sci.,4 (1), 26-31. [Google Scholar]
  11. Geissler N., S. Hussin, H. W.Koyro (2009). Elevated atmospheric CO2 concentration ameliorates effects of NaCl salinity on photosynthesis and leaf structure of Astertripolium L. J. Exp. Bot., 60, 137–151. [Google Scholar]
  12. Glenn E. P., R. Pfister, J. Brown, T. L. Thompson, J. O’leary (1996). Na and Kaccumulation and salt tolerance of Atriplexcanescens (Chenopodiaceae) genotypes. Am. J. Bot., 83, 997–1005. [Google Scholar]
  13. Glenn E.P., S. G.  Nelson, B. Ambrose, R. Martinez, D. Soliz, V. Pabendinskas, K. Hultine (2012). Comparison of salinity tolerance of three atriplex spp. in well-watered and drying soils_.Environmental and Experimental Botany, 83, 62– 72 [Google Scholar]
  14.   [Google Scholar]
  15. Haouala F., H., Ferjani, S. Ben El Hadj (2007). Effet de la salinité sur la répartition des cations (Na+, K+ et Ca2+) et du chlore (Cl-) dans les parties aériennes et les racines du ray-grass anglais du chiendent. Biotechnol. Agron. Soc. Environ., 11(3), 235-244. [Google Scholar]
  16. Hassani,  A.B.,  M.E.  Ghanem, S.  Bouzid,  ,  S.  Lutts  (2008).  An  inland  and  a coastal population of the Mediterranean xero-halophyte species Atriplex  halimus  L. differ in their ability to accumulate proline and glycinebetaine in response to salinity and water stress. J. Exp. Bot. 59, 1315-1326. [Google Scholar]
  17. Lambert J., J.P. Delhaye, B. Tousaint (1979). Phosphore et agriculturel’importance du phosphore dans une fertilisation équilibrée. Actes du symposium de l’ISMA, 13-14 mars, Casablanca, Maroc., P. 7-16. [Google Scholar]
  18. Lamzeri, H. (2007). Réponses écophysiologiques de trois Acacia Eucalyptus et Schinus (A. cyanophylla, E. soumises à un stress salin. Mémoire de magister Univ.Mentouri, Constantine, 141p. [Google Scholar]
  19. Mezni M., A. Albouchi, E. Bizid, M. Hamza (2010). Uptake,organic osmotica contents and water balance in alfalfa under salt stress. Journal of Phytology, 2(11), 01–12. [Google Scholar]
  20. Nada R.M., G. H. Abogadallah (2015). Developmental acquisition of salt tolerance in the halophyte Atriplex halimus L. is related to differential regulation of salt inducible genes. Plant Growth Regul., 75, 165-178 [Google Scholar]
  21. Nedjimi, B., Y. Daoud (2009). Cadmium accumulation in Atriplex halimus spp. hydraulic conductivity and schweinfurthii and its influence on growth, proline, root nutrient uptake. Flora, 20 (3), 16– 324. [Google Scholar]
  22. Pongrac P., K. Vogel-Mikuš, M. Regvar, M. Kaligarič, P. Vavpetič, M. Kelemen, N. Grlj, O. Shelef, A. Golan-Goldhirsh, S. Rachmilevitch, P. Pelicon (2013). On the distribution and evaluation of Na, Mg and Cl in leaves of selected halophytes. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 306: P. 144-149. [Google Scholar]
  23. Ripoll C., M-C. Verdus, V.Norris, M. Tafforeau, M. Thellier (2007). Mise en mémoire de stimuli abiotiques chez les plantes : rôle du calcium. Académie d’Agriculture de France. Séance du 20 mars 2007. 5p. [Google Scholar]
  24. Rizwan M. (2012) Silicon-mediated heavy-metal tolerance in durum wheat: evidences of combined effects at the plant and soil levels. Thése de DOCTORAT, Univ. Aix-Marseille, 231 p. [Google Scholar]
  25. Rossi L., A. Francini, A. Minnocci, L. Sebastiani, (2015). Salt stress modifies apoplastic barriers in olive (Olea europaea L.): a comparison between a salt-tolerant and a salt-sensitive cultivar. Scientia Horticulturae, 192, 38-46. [Google Scholar]
  26. Shabala S. N., A. S. Mackay (2011). Ion transport in halophytes. Adv. Bot. Res., 57, 151– 187. [Google Scholar]
  27. Shi B., Y. Qu, H. Li (2017). Ecological Engineering 98, 166–171. [Google Scholar]
  28. Tafforeau M., (2002). Etude des phases précoces de la transduction des signaux environnementaux chez le lin : une approche protéomique. Thèse de doctorat en Biochimie Végétale. Université de Rouen. France, 255p. [Google Scholar]
  29.  Tavakkoli E., P. Rengasamy, Gk. Mcdonald (2010). The response of barley to salinity differs between hydroponics and soil systems. Functional Plant Biology, 37, 633. stress 621– [Google Scholar]
  30.  Tester M., R. Davenport (2003). Na+ resistance and Na+ transport in higher plants. Annals of Botany, 91 (3), 503-527 [Google Scholar]
  31. Tsutsumi K., N. Yamada, S. Cha-Um, Y. Tanaka, T. Takabe (2015). Differential accumulation of glycinebetaine and choline monooxygenase in bladder hairs and  lamina leaves of Atriplex gmelini under high salinity. J. of Plant Physiology, 176, 101-107. [Google Scholar]
  32. Uddin M.K., A.S. Juraimi, M.R. Ismail, M.A Hossai., R. Othman and  A.A. (2011). Rahim Effect of salinity stress on nutrient uptake and chlorophyll tropical content of turfgrass species. Austr. J. Crop Sci., 5, 620–629. [Google Scholar]
  33. Yuan J., W. Li and Y. Deng (2015). Amplified subtropical stationary waves in boreal summer and their implications for regional water extremes. Environ. Res. Lett., 10, 104-109. [Google Scholar]