Pen Academic Publishing   |  e-ISSN: 2602-4772

Original article | International Journal of Innovative Approaches in Agricultural Research 2018, Vol. 2(3) 177-186

Determination of Antioxidant Activity and Total Anthocyanin Content of Frozen and Thawed Strawberries under Different Conditions

Duygu Benzer Gürel, Dilay Kart, Özlem Çağındı & Neriman Bağdatlıoğlu

pp. 177 - 186   |  DOI: https://doi.org/10.29329/ijiaar.2018.151.4   |  Manu. Number: MANU-1809-01-0005

Published online: September 26, 2018  |   Number of Views: 54  |  Number of Download: 162


Abstract

Strawberries are among the summer fruits popularly consumed by consumers. High antioxidant activity, anticancer, anti-inflammatory effect and high bioactive substance content are also beneficial to human health. However, their shelf life is short due to their high water content and active metabolismThey can be kept frozen and processed in order to be consumable in all seasons. During freezing, when the water in the contents turns into ice crystals, the expansion occurs. For this reason, frozen and thawed fruit is generally softer than fresh fruit. These effects can vary with different types of  freezing condition. In addition, freezing and thawing conditions can affect the stability of phenolic compounds, anthocyanins and antioxidant activity.

 In this study, fresh strawberries were frozen at different temperatures; -18 °C, -86 °C, and individually quick frozen (IQF) as freezing methods. Frozen strawberries were thawed at 24 °C at room condition, +4 °C in the refrigerator and microwave oven with thawing mode. Total phenolic compounds, total flavonoid and total anthocyanins content, and total antioxidant activity were performed to examine the effect of freezing and thawing on biocompatibility. According to the results, the total phenolic compounds in the range of 0.77-2.76 mg gallic acid equivalent/g, flavonoid content 0.32-0.90 mg catechin equivalent/g, total anthocyanin content 0.02-0.16 mg/g and total antioxidant capacity 49.06 and 55.64% were found in strawberries. According to these results, it was determined that the loss of bioactive components was minimized by frozen with IQF and thawing in the microwave oven. In addition, the shortness of the thawing time in this process provides an extra advantage.

Keywords: DPPH, Freezing, Strawberry, Thawing.


How to Cite this Article?

APA 6th edition
Gurel, D.B., Kart, D., Cagindi, O. & Bagdatlioglu, N. (2018). Determination of Antioxidant Activity and Total Anthocyanin Content of Frozen and Thawed Strawberries under Different Conditions. International Journal of Innovative Approaches in Agricultural Research, 2(3), 177-186. doi: 10.29329/ijiaar.2018.151.4

Harvard
Gurel, D., Kart, D., Cagindi, O. and Bagdatlioglu, N. (2018). Determination of Antioxidant Activity and Total Anthocyanin Content of Frozen and Thawed Strawberries under Different Conditions. International Journal of Innovative Approaches in Agricultural Research, 2(3), pp. 177-186.

Chicago 16th edition
Gurel, Duygu Benzer, Dilay Kart, Ozlem Cagindi and Neriman Bagdatlioglu (2018). "Determination of Antioxidant Activity and Total Anthocyanin Content of Frozen and Thawed Strawberries under Different Conditions". International Journal of Innovative Approaches in Agricultural Research 2 (3):177-186. doi:10.29329/ijiaar.2018.151.4.

References
  1. AOAC, 2005. Metot No: 2005.02
Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines. [Google Scholar]
  2. Asafı, N. and B. Cemeroğlu (2000). Vişne ve nar suyu ve konsantratlarında antosiyaninlerin degradasyonu. Gıda Dergisi, 25(6). [Google Scholar]
  3. Atasever, M. (2000). Besin işyerlerinde: Hijyen, besinlerin hazırlanması ve muhafazası. Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi, 11(2), 117-122. [Google Scholar]
  4. Baysal, T., F. İçier, A.H. Baysal (2011).Güncel elektriksel ısıtma yöntemleri. Sidaş yayınları, İzmir, ISBN: 9786058797666. [Google Scholar]
  5. Biglia, A., L. Comba, E. Fabrizio, P. Gay and D.R. Aimonino (2016). Case studies in food freezing at very low temperature. Energy Procedia, 101, 305-312. [Google Scholar]
  6. Bozkır, H., T. Baysal and A.R. Ergün (2014). Gıda Endüstrisinde Uygulanan Yeni Çözündürme Teknikleri. Academic Food Journal/Akademik GIDA, 12(3). [Google Scholar]
  7. Bulut, M., Ö. Bayer, E. Kırtıl and A. Bayındırlı  (2018). Effect of freezing rate and storage on the texture and quality parameters of strawberry and green bean frozen in home type freezer. Int. J. Refrig., 88, 360-369. [Google Scholar]
  8. Cemeroğlu B. Gıda Analizleri. 3. Baskı, Gıda Teknolojisi Derneği Ya. No:34, Ankara, Türkiye, 2013, 480 s.  [Google Scholar]
  9. Çağındı, Ö. (2016). Mikrodalga Uygulamasının Kırmızı Üzüm Suyunun Antosiyanin İçeriği ile Bazı Fizikokimyasal Özellikleri Üzerine Etkisi. Akademik Gıda, 14(4), 356-361. [Google Scholar]
  10. Çağındı, Ö. 2009. Ayçiçeği, keten tohumu, yulaf ve mürdüm eriği kurusu ile zenginleştirilmiş sütlü, acı (bitter) ve beyaz çikolataların raf ömrü boyunca bazı fiziksel, kimyasal ve duyusal özelliklerinin araştırılması. Ege Üniversitesi, Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı, İzmir, 346 s. (Phd. Thesis). [Google Scholar]
  11. Çam, M. and S.  Ersus (2008). Dondurularak Kurutulmuş Çilek Meyvesinin Toplam Fenolik Madde İçeriğinin ve Antioksidan Kapasitesinin Belirlenmesi. Türkiye, 10. Gıda Kongresi, 21-23. [Google Scholar]
  12. Çapanoğlu, E. and  D. Boyacıoğlu (2009). Meyve ve Sebzelerin Flavonoid İçeriği Üzerine İşlemenin Etkisi. Akademik Gıda 7(6), 41-46. [Google Scholar]
  13. de Ancos, B., E. M. González and M. P.  Cano (2000). Ellagic acid, vitamin C, and total phenolic contents and radical scavenging capacity affected by freezing and frozen storage in raspberry fruit. J. Agric. Food Chem., 48(10), 4565-4570. [Google Scholar]
  14. Fellows, P.J. (2017). Freezing, Food Processing Technology (Fourth Edition), p. 885-928. [Google Scholar]
  15. Holzwarth, M., S. Korhummel, R. Carle and D. R. Kammerer (2012). Evaluation of the effects of different freezing and thawing methods on color, polyphenol and ascorbic acid retention in strawberries (Fragaria× ananassa Duch.). Food Res. Int., 48(1), 241-248. [Google Scholar]
  16. Janowicz, M., A. Lenart and W. Idzikowska (2007). Sorption properties of osmotically-dehydrated and freeze-dried strawberries. Polish J. Food Nutr. Sci., 57(1). [Google Scholar]
  17. Oszmiański, J., A, Wojdyło and J. Kolniak (2009). Effect of l-ascorbic acid, sugar, pectin and freeze–thaw treatment on polyphenol content of frozen strawberries. LWT-Food Sci. Technol., 42(2), 581-586. [Google Scholar]
  18. Rodríguez, M. M., A. Rodriguez and R. H. Mascheroni (2015). Color, Texture, Rehydration Ability and Phenolic Compounds of Plums Partially Osmodehydrated and Finish‐Dried by Hot Air. J. Food Process. Pres., 39(6), 2647-2662. [Google Scholar]
  19. Sablani, S.S. (2015). Freezing of Fruits and Impact on Anthocyanins.  [Google Scholar]
  20. Processing and Impact on Active Components in Food. p. 147-156. [Google Scholar]
  21. Sağbasan, B. (2015). Türkiye’de Yaygın Olarak Tüketilen Kuru Kırmızı Meyvelerin İçerdiği Antioksidan Maddelerin Biyoerişilebilirliğinin İncelenmesi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı, İstanbul, 104 s. (Master Thesis). [Google Scholar]
  22. Şengül, Y. (2014). Farklı Dondurma ve Çözündürme Metotlarının Nar Tanelerinin Fiziksel ve Antioksidan Özellikleri Üzerine Etkisi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı, İstanbul, 136 s, (Master Thesis). [Google Scholar]