Pen Academic Publishing   |  e-ISSN: 2602-4772

Original article | International Journal of Innovative Approaches in Agricultural Research 2019, Vol. 3(2) 217-228

Optimization of Low-fat Butter Using Response Surface Methodology: Effect on Physicochemical Properties and Consumers' Acceptance

Dorra Salhi, Sarra Jrıbı, Sonia Boudiche, Souraya Kaabia & Hajer Debbabi

pp. 217 - 228   |  DOI: https://doi.org/10.29329/ijiaar.2019.194.8   |  Manu. Number: MANU-1808-30-0001

Published online: June 30, 2019  |   Number of Views: 8  |  Number of Download: 24


Abstract

According the WHO, diets high in fat are linked to obesity and overweight, both which increase the likelihood and prospect of diabetes. Therefore the food industry has to review their formulations in relation to fat. The objective of the study was to develop and characterize a fat reduced butter. In order to manufacture product with desirable properties, formulation consisted on response surface methodology, based on 3 different factors such as percentages of emulsifier additive E471 (glyceryl monostearate, glyceryl distearate), xanthan gum (E415, thickening agent, stabiliser and emulsifier) and water, and 2 levels (-1,+1). For determination of optimum points, four responses were selected: percentages of fat, water, pH and hardness. Optimum formulas were validated by sensory tests. In the second part of this study, the effect of storage at 4°C during 20 days on physicochemical and sensory properties of the  butter was assessed. Preliminary optimized formula of reduced-fat butter was obtained by emulsifier additive E471, xanthan gum E415 and water contents of 3, 0.1 and 40%, respectively. However, this fat reduction of 63% led to a weak sensory acceptance score. Additional formulation with butter aroma and coloring agent (E160a) has significantly improved consumers ‘acceptance. Quality characterization showed that fat reduction in butter formula has significantly induced an increase in water activity, pH, acidity, peroxide and iodine indexes, and a decrease in hardness, when compared to control butter. Moreover, storage of low fat butter at 6°C during 20 days induced a significant decrease in pH, and iodine index, whereas acidity and peroxide indexes increased significantly and in a higher extend, when compared to control butter. Microbial load increased after 16 days of storage. These variations related to higher water content led to a decrease in low-fat butter shelf life at 6°C. Our results showed that the production of low-fat butter can be industrially applicable and recommended to people who are interested in consumption of reduced- fat foods.

 

Keywords: Butter,low-fat, RSM, quality


How to Cite this Article?

APA 6th edition
Salhi, D., Jribi, S., Boudiche, S., Kaabia, S. & Debbabi, H. (2019). Optimization of Low-fat Butter Using Response Surface Methodology: Effect on Physicochemical Properties and Consumers' Acceptance . International Journal of Innovative Approaches in Agricultural Research, 3(2), 217-228. doi: 10.29329/ijiaar.2019.194.8

Harvard
Salhi, D., Jribi, S., Boudiche, S., Kaabia, S. and Debbabi, H. (2019). Optimization of Low-fat Butter Using Response Surface Methodology: Effect on Physicochemical Properties and Consumers' Acceptance . International Journal of Innovative Approaches in Agricultural Research, 3(2), pp. 217-228.

Chicago 16th edition
Salhi, Dorra, Sarra Jribi, Sonia Boudiche, Souraya Kaabia and Hajer Debbabi (2019). "Optimization of Low-fat Butter Using Response Surface Methodology: Effect on Physicochemical Properties and Consumers' Acceptance ". International Journal of Innovative Approaches in Agricultural Research 3 (2):217-228. doi:10.29329/ijiaar.2019.194.8.

References
  1. Brahmi, M., M. Ba, Y. Hidri and A. Hassen (2018). Factorial experimental design intended for the optimization of the alumina purification conditions. J. Mol. Struct., 1157, 567-578. [Google Scholar]
  2. Bray, G. A., S. Paeratakul and B. M. Popkin (2004). Dietary fat and obesity: a review of animal, clinical and epidemiological studies. Physiol. Behav., 83(4), 549-555. [Google Scholar]
  3. Chronakis, L. S., Kasapis, S. (1995). A rheological study on the application of carbohydrate-protein incompatibility to the development of low fat commercial spreads. Carbohyd. Polym., 28(4), 367-373. [Google Scholar]
  4. Couch, D., A. Fried and P. Komesaroff (2018). Public health and obesity prevention campaigns–a case study and critical discussion. Commun. Res. Pract., 4(2), 149-166. [Google Scholar]
  5. Dietary Guidelines 2015 - 2020 (20015). https://health.gov/dietaryguidelines/2015/guidelines [Google Scholar]
  6. Euston, S. R. (2008). Emulsifiers in dairy products and dairy substitutes. In Food emulsifiers and their applications (pp. 195-232). Springer, New York, NY. [Google Scholar]
  7. Flack, E. (1996). The role of emulsifiers in low-fat food products. Handbook of fat replacers, 213-234. [Google Scholar]
  8. INS, Institut National des Statistiques (2016). Statistiques Tunisie: Flash consommation et niveau de vie, bulletin de consommation n°1, Tunis, Tunisie, 2 p. [Google Scholar]
  9. ISO 13299 (2016). Sensory analysis - Methodology - General guidance for establishing a sensory profile [Google Scholar]
  10. ISO 8587 (2006). Analyse sensorielle - Méthodologie - Classement par rangs [Google Scholar]
  11. Journal Officiel de l’Union Européenne CE/L 347/819, 2012. Matières grasses tartinables. [Google Scholar]
  12.  Karazhiyan, H., S. M. Razavi and G. O. Phillips (2011). Extraction optimization of  a hydrocolloid extract from cress seed (Lepidium sativum) using response surface methodology. Food Hydrocoll., 25, 915–920. [Google Scholar]
  13. Katzbauer, B. (1998). Properties and applications of xanthan gum. Polymer degradation and Stability, 59(1-3), 81-84. [Google Scholar]
  14. Khuri, A.I. and S. Mukhopadhyay (2010). Response surface methodology. WIREs Comp stats, 2, 128-149. [Google Scholar]
  15. Lazo-Velez, M.A., J. Aviles-Gonzalez, S. O. Serna-Saldivar and M. C. Temblador-Perez (2016). Optimization of wheat sprouting for production of selenium enriched kernels using response surface methodology and  desirability function. LWT - Food Sci. Technol., 65, 1080-1086. [Google Scholar]
  16. Ledenbach, L. H. and R.T. Marshall (2009). Microbiological spoilage of dairy products. In Compendium of the microbiological spoilage of foods and beverages (pp. 41-67). Springer, New York, NY. [Google Scholar]
  17. Lim, J., Inglett, G. E., Lee, S. (2010). Response to consumer demand for reduced-fat foods; multi-functional fat replacers. Jpn J. Food Engr., 11(4), 147-152. [Google Scholar]
  18. Mozaffarian, D. and D. S.  Ludwig (2015). The 2015 US dietary guidelines: lifting the ban on total dietary fat. JAMA, 313(24), 2421-2422. [Google Scholar]
  19. Nozière, P., B. Graulet, A. Lucas, B. Martin, P. Grolier and M. Doreau (2006). Carotenoids for ruminants: From forages to dairy products. Anim. Feed Sci. Tech., 131(3-4), 418-450. [Google Scholar]
  20. NT (tunisian standard) 14. 85 (1984). Beurre-Détermination de la teneur en eau-méthode par étuvage. [Google Scholar]
  21. NT 14. 91 (1985). Beurre-Détermination du pH.  [Google Scholar]
  22. NT 14. 130 (1998). Beurre-Dénombrement des coliformes totaux.  [Google Scholar]
  23. NT 14. 224 (1994).  Beurre-Dénombrement des levures et moisissures.  [Google Scholar]
  24. NT 14. 83 (1983). Beurre-Détermination de l’acidité titrable. [Google Scholar]
  25. NT 14. 88 (1984). Beurre-Détermination de la teneur en matière grasse. [Google Scholar]
  26. NT 14. 93 (1985). Beurre-Détermination de l’indice d’iode.  [Google Scholar]
  27. NT 14. 98 (1985). Beurre-Détermination de l’indice de peroxyde.  [Google Scholar]
  28. O’Callaghan, T. F., H. Faulkner, S. McAuliffe, M. G. O’Sullivan, D. Hennessy, P. Dillon and R. P. Ross (2016). Quality characteristics, chemical composition, and sensory properties of butter from cows on pasture versus indoor feeding systems. J.  Dairy Sci., 99(12), 9441-9460. [Google Scholar]
  29. Petrotest (2013). Manuel français : le pénétromètre PNR 10 et ses possibilités. Petrotest France, 15 p. [Google Scholar]
  30. Phillips, G. O. and P. A. Williams (Eds.). (2009). Handbook of hydrocolloids. Elsevier. [Google Scholar]
  31. Pimpin, L., J. H. Wu, H. Haskelberg, L. Del Gobbo and D. Mozaffarian (2016). Is butter back? A systematic review and meta-analysis of butter consumption and risk of cardiovascular disease, diabetes, and total mortality. PLoS One, 11(6), e0158118. [Google Scholar]
  32. Roller, S. and S. A. Jones (1996). Handbook of fat replacers. CRC Press. [Google Scholar]
  33. Rønholt, S., K. Mortensen and J. C. Knudsen (2013). The effective factors on the structure of butter and other milk fat‐based products. Compr. Rev. Food Sci. F., 12(5), 468-482. [Google Scholar]
  34. Sharp, C., P. Ball, H. Morrissey and S. Nielsen (2015). Health promotion in CVD prevention: Increasing patient awareness of modifiable cardiovascular risk factors. Australian Pharmacist, 34(3), 68. [Google Scholar]
  35. Talbot, G. (2016). Developing food products for customers with low fat and low saturated fat requirements: dairy and meat products. In: Developing food products for consumers with specific dietary needs Woodhead Publishing Series in Food Science, Technology and Nutrition, Pp. 107-128.  [Google Scholar]
  36. Vanbergue, E., C. Hurtaud, J. L. Peyraud, E. Beuvier, G. Duboz and S. Buchin (2018). Effects of n-3 fatty acid sources on butter and hard cooked cheese; technological properties and sensory quality. Int. Dairy J., 82, 35-44. [Google Scholar]
  37. Wang, D. D. and F. B. Hu (2017). Dietary fat and risk of cardiovascular disease: recent controversies and advances. Annu. Rev. Nutr., 37, 423-446. [Google Scholar]
  38. Waraho, T., D. J. McClements and E. A.Decker (2011). Mechanisms of lipid oxidation in food dispersions. Trends Food Sci. Tech., 22(1), 3-13. [Google Scholar]
  39. Wright, A. J., M. G. Scanlon, R. W. Hartel and A. G. Marangoni (2001). Rheological properties of milkfat and butter. J.  Food Sci., 66(8), 1056-1071. [Google Scholar]