Pen Academic Publishing   |  e-ISSN: 2602-4772

Review article | International Journal of Innovative Approaches in Agricultural Research 2019, Vol. 3(1) 148-161

Valorization of Household Waste via Biogas Production in Algeria since 1938: Inventory and Perspectives

Kheira Benaissa, Dadamoussa Belkhir, Bendraoua Abdelaziz & Belal Saliha

pp. 148 - 161   |  DOI: https://doi.org/10.29329/ijiaar.2019.188.14   |  Manu. Number: MANU-1809-01-0002

Published online: March 29, 2019  |   Number of Views: 47  |  Number of Download: 149


Abstract

Energy is an important factor in Algerian’s economy, the recent Algerian's economy crisis is due to the fall of the oil incomes of 70% in less than two years, which made the country lose half of its external receipts and causing an important deficit of its trade balance. The fossil fuel reserves will not last eternally (some 40 to 50 years) and the human activity causes a significant change of the climate, which has actually important repercussions. The need to find an alternative and renewable source of energy is becoming increasingly important for the sustainable development. However, Algeria is a country rich in solar and biomass layer; according to the National Waste Agency, more than 28,219 tones of municipal solid waste are generated per day. Energetic valorization of municipal solid waste (MSW) seems to be an alternative solution for sustainable development of Algeria, which the biogas constitutes a considerable source of renewable energy. This paper presents an overview for the status of this technology in Algeria including the increasing of the interest in methanization since 1938. Also in this study, is referred the first experience of Tamanrasset (southern of Algeria) in the field of biogas production.

Keywords: Biogas, Methane, Municipal Solid Waste, Renewable Energies, Methanization, Valorization


How to Cite this Article?

APA 6th edition
Benaissa, K., Belkhir, D., Abdelaziz, B. & Saliha, B. (2019). Valorization of Household Waste via Biogas Production in Algeria since 1938: Inventory and Perspectives . International Journal of Innovative Approaches in Agricultural Research, 3(1), 148-161. doi: 10.29329/ijiaar.2019.188.14

Harvard
Benaissa, K., Belkhir, D., Abdelaziz, B. and Saliha, B. (2019). Valorization of Household Waste via Biogas Production in Algeria since 1938: Inventory and Perspectives . International Journal of Innovative Approaches in Agricultural Research, 3(1), pp. 148-161.

Chicago 16th edition
Benaissa, Kheira, Dadamoussa Belkhir, Bendraoua Abdelaziz and Belal Saliha (2019). "Valorization of Household Waste via Biogas Production in Algeria since 1938: Inventory and Perspectives ". International Journal of Innovative Approaches in Agricultural Research 3 (1):148-161. doi:10.29329/ijiaar.2019.188.14.

References
  1. Abderezzak, B., B. Khelidj, A. Kellaci and M. Tahar Abbes (2012). The Smart Use of Biogas : Decision Support Tool. AASRI Procedia [2012 AASRI Conf. on Power and Energy Systems], 02, 156-162.  [Google Scholar]
  2. Adel, M. (2012). L’insolation, une richesse à exploiter, Portail Algérien des ENERGIES RENOUVELABLES, CDER, Alger, Algérie. [Google Scholar]
  3. Adler, E. (2015). “What is the methanization? historical, theoretical and technical backgrounds”, School of Engineers of the city of Paris [Technical days ASTEE-EIVP, “Co-digestion of muds and other waste”], p. 41. Inedit. [Google Scholar]
  4. Akbi, A., M. Saber, M. Aziza and N. Yassaa (2017). An overview of sustainable bioenergy potential in Algeria. Renew. Sust. Energ. Rev., 72, 240–245. [Google Scholar]
  5. Azbara, N., T. Keskina, E. C. Catalkaya (2008). Improvement in anaerobic degradation of olive mill effluent (OME) by chemical pretreatment using batch systems. Biochem. Eng. J., 38 (3), 379–383. [Google Scholar]
  6. Belkaid, I., A. Namane, H. Cabana, M. Nakib (2018). Characterization of Three Different Sewage Sludge for Reuse in the Context of Sustainable Development in Algeria. In: Kallel A., Ksibi M., Ben Dhia H., Khélifi N. (eds) Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions. EMCEI 2017. Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development). Springer, Cham. doi: https://doi.org/10.1007/978-3-319-70548-4_396 [Google Scholar] [Crossref] 
  7. Benaissa, K., B. Dadamoussa and A. Bendraoua (2017). Biogas and CH4 quality and productivity by co-digesting dromedary dung with kitchen waste and sewage sludge water under mesophilic conditions. J. Fundam. Appl. Sci., 9 (3), 1701-1717.  [Google Scholar]
  8. Benaissa, K.N., B. Dadamoussa, A. Bendraoua, M. Maizirwan and B. Labed (2017). Effects of Co-digestion of Camel Dung and Municipal Solid Wastes on Quality of Biogas, Methane and Biofertilizer Production. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 40 (1), 7-17. [Google Scholar]
  9. Benkhelifa, A. (2012). ” Modélisation et expérimentation d’un capteur solaire plan à eau ”, p.52. Inedit. [Google Scholar]
  10. Bensmail, L. and A. Touzi (2012). Energetic valorization of the biomass: Contribution of the biogas production to sustainable development. J. Sci. Res., 1 (3), 19-23. [Google Scholar]
  11. Boukelia and Mecibah (2012). Solid waste as renewable source of energy: current and future possibility in Algeria, International Journal of Energy and Environmental Engineering. doi : https://doi.org/10.1186/2251-6832-3-17. [Google Scholar] [Crossref] 
  12. Dahou, M.E.A. and A. Touzi (2018). Alkaline Pretreatment Effect on the Production of Biogas from the Sludge of the Lagoon Station of Adrar City (Southwest of Algeria). In: Kallel A., Ksibi M., Ben Dhia H., Khélifi N. (eds) Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions. EMCEI 2017. Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development). Online ISBN: 978-3-319-70548-4.  [Google Scholar]
  13. Derbal, K., M. Bencheikh-lehocine, F. Cecchi, A.H. Meniai and P. Pavan (2009). Application of the IWA ADM1 model to simulate anaerobic co-digestion of organic waste with waste activated sludge in mesophilic condition. Bioresour. Technol., 100 (4), 1539–1543.  [Google Scholar]
  14. Djaafri, M., S. Kaloum, M. Khelafi, A. Tahri, F. Salem, K. Kaidi, L. Bensmail, O. Barako, A. Kadri and A. Amrouche (2014). Methanization of organic waste issued from African university campus in Adrar city (southwestern of Algeria). Journal of Materials and Environment Sciences, 5 (S2), 2484-2488. ISSN: 2028-2508. [Google Scholar]
  15. Ducellier, G. L. R.  and M. A. Isman (1938). System for producing a pulsating circulation in apparatus contains gas-evolving products, Algeria. [Patented 26 September 1939. United States Patent Office n°2.174.203].  [Google Scholar]
  16. Fedailaine, M., K. Moussi, M. Khitous, S. Abada, M. Saber and N. Tirichine (2015). Modeling of the anaerobic digestion of organic waste for biogas production, Procedia Computer Science [The 5th International Conference on Sustainable Energy Information Technology (SEIT 2015)], 52, 730–737. [Google Scholar]
  17. Ghouali, A., T. Sari and J. Harmand (2015). Maximizing biogas production from the anaerobic digestion. J. Process Contr., 36, 79–88.  [Google Scholar]
  18. Gourine, L. (2010). “Country report on the solid waste management: Algeria. The regional solid waste exchange of information and expertise network in Mashreq and Maghreb countries,” http://www.sweep-net.org/content/algeria. [Google Scholar]
  19. Hadri, K., Khelafi, M. A. Boulal et N. Nedjah (2007). conception et réalisation d’un digesteur solaire de type batch, Revue des Energies Renouvelables, CDER [ICRESD-07, Tlemcen, Algeria], 97–100. [Google Scholar]
  20. Igoud, S. Tou, I., Kehal, S., N. Mansouri et A. Touzi (2002). Première Approche de la Caractérisation du Biogaz Produit à Partir des Déjections Bovines. Revue des Energies Renouvelables, 05, 123-128. [Google Scholar]
  21. International Renewable Energy Agency IRENA (2015). Renewable power generation costs in 2014. [Google Scholar]
  22. Kalloum, S., F. Salem, A. Kouki and H. Mokaddem (2014). Influence of inoculums/substrate ratios (ISRs) on the mesophilic anaerobic digestion of slaughterhouse waste in batch mode: Process stability and biogas production, Energy Procedia [The International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability, TMREES14 ], 50, 57–63.  [Google Scholar]
  23. Kalloum, S., M. Khelafi, M. Djaafri, A. Tahri and A. Touzi (2007). Study of the influence of the pH on the production of biogas from household waste. Rev. Renew. Energ., 10 (4), 539–543.  [Google Scholar]
  24. Maamri, S. and M. Amrani (2014). Biogas production from waste activated sludge using cattle dung inoculums: Effect of total solid contents and kinetics study. Energy Procedia, 50, 352–359.   [Google Scholar]
  25. Mameria, A. and F. Tabet (2016). Numerical investigation of counter-flow diffusion flame of biogas–hydrogen blends: Effects of biogas composition, hydrogen enrichment and scalar dissipation rate on flame structure and emissions. Int. J. Hydr. Energ., 41 (3),  2011–2022.  [Google Scholar]
  26. Mebarkia, B., B. Adouane, F. Khaldi, S. Dehimi and D. Haddad (2015). Theoretical estimation of the production of biogas from the landfill of Batna city and its electrical conversion by a SOFC. Int. J. Hydr. Energ., 40 (39), 13799–13805.  [Google Scholar]
  27. Merlin Christy, P., L.R. Gopinath and D. Divya (2014). A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renew. Sust. Energ. Rev., 34, 167–173.  [Google Scholar]
  28. Ministry of Energy and Mines (2011). “Renewable Energy and Energy Efficiency Program, Algiers, p. 36.  [Google Scholar]
  29. Mokrane, C., B. Adouane and A. Benzaoui (2018). Composition and Stoichiometry Effects of Biogas as Fuel in Spark Ignition Engine. International Journal of Automotive and Mechanical Engineering, ISSN: 2229-8649 (Print); ISSN: 2180-1606 (Online), 15 (1), 5036-5052. [Google Scholar]
  30. Münster, M., H. Ravn, K. Hedegaard, N. Juul, M. Ljunggren Söderman (2015). Economic and environmental optimization of waste treatment. J. Waste Manage., http://dx.doi.org/10.1016/j.wasman.2014.12.005. [Google Scholar]
  31. Nia, M., M. Chegaar, M.F. Benatallah, and M. Aillerie (2013), Contribution to the quantification of solar radiation in Algeria, Energy Procedia, 36, 730–737. [Google Scholar]
  32. Siboukeur, H., A. Touzi, A. Youcefi, M.D. Ould El Hadj (2015). Microbiological study of the anaerobic digestion of sludge from the purifying plant wastewater from the city of Touggourt, southeast of Algeria. Energy Procedia, 74, 172–176.  [Google Scholar]
  33. Sonalgaz (2008). Stratégie et Veille : Recueil trimestriel de l’hebdomadaire, n°02, DGDS/DS.  [Google Scholar]
  34. Tabet Aoul, M. (2001). Types de traitement des déchets solides urbains : evaluation des coûts et impacts sur l’environnement. Revue des Energies renouvelables. Special number Production and Valorization, Biomass, 97–102. [Google Scholar]
  35. Tahri, A., M. Djaafri, M. Khelafi, S. Kalloum et F. Salem (2012). Amélioration du rendement de la production de biogaz par co-digestion des déchets organiques : déchets d’abattoir et de volaille. Revue des Energies Renouvelables. [SIENR’12 Ghardaïa, Algeria], 375–380. [Google Scholar]
  36. TTZ BREMERHAVEN (2011). Gestion de déchets organiques Valorisation des Déchets dans le Secteur Agroalimentaire au Maghreb. Réseau des Entreprises Maghrébines pour l’Environnement (REME). [Google Scholar]
  37. Youb, A., O. Youb and H. Bouabdessalam (2014). Sustainable solid waste management in the city of Mecheria (western Algeria), Energy Procedia, 50, 953 – 959.  [Google Scholar]
  38. Zemmouri, H. (2011). l'eau usée vers le biogaz, CDER, bulletin 020, 04–05. [Google Scholar]