Pen Academic Publishing   |  e-ISSN: 2602-4772

Original article | International Journal of Innovative Approaches in Agricultural Research 2019, Vol. 3(3) 353-364

Evaluation of the Detoxification Potential of Micrococcus Strains and Plants for Bioremediate Organochlorine Herbicides

Gökhan Önder Ergüven & Göksel Demir

pp. 353 - 364   |  DOI: https://doi.org/10.29329/ijiaar.2019.206.1   |  Manu. Number: MANU-1908-01-0003

Published online: September 30, 2019  |   Number of Views: 18  |  Number of Download: 40


Abstract

The objective of our study is to contribute towards the development of the phytoremediation method which is a method that attempts to clean the soil polluted with organochlorine herbicides with the combined application of specially chosen plants, such as alfalfa, maize and soybean with Micrococcus strains. The enzymes and genes involved in the process of bioremediation of various pesticides have also been discussed. Initial degradation of herbicides carried out by bacterial strains include formatin of dehalogenated products with easy plant uptake and undergo oxidative degradation through plant detoxification enzymes, such as cyctochrome P450, peroxidase, phenoloxidase and glutathion S-transferase. Subsequently, this method can finalise the mineralization and degradation of toxicants into nontoxic compounds. Our study presents the results of our model experiments of selected strains of genera Micrococcus and plant phytoremediators. According to the results of the phytoremediation studies, Micrococcus sp. DR44 and Micrococcus sp. HEXBA04 showed best removal performance with Oxadiazon herbicide as 84% and Micrococcus sp. Pv8 and Micrococcus sp. BP3_1A showed 71% removal performance on Quizalofop-p-ethyl with alfalfa with maize, while removal efficiency of Liuron was 77% in alfalfa with Micrococcus sp. NCTC2665. Our study shows that effectively using this newly developed technological approach results in a reduction of pollution in soil samples that have been artificially contaminated. Future perspectives of pesticides bioremediation has also been briefly articulated to make a realistic comment with an element of optimism for researchers working in this field.

Keywords: : phytoremediation, organochlorine herbicides, micrococcus strains, detoxification enzymes


How to Cite this Article?

APA 6th edition
Erguven, G.O. & Demir, G. (2019). Evaluation of the Detoxification Potential of Micrococcus Strains and Plants for Bioremediate Organochlorine Herbicides . International Journal of Innovative Approaches in Agricultural Research, 3(3), 353-364. doi: 10.29329/ijiaar.2019.206.1

Harvard
Erguven, G. and Demir, G. (2019). Evaluation of the Detoxification Potential of Micrococcus Strains and Plants for Bioremediate Organochlorine Herbicides . International Journal of Innovative Approaches in Agricultural Research, 3(3), pp. 353-364.

Chicago 16th edition
Erguven, Gokhan Onder and Goksel Demir (2019). "Evaluation of the Detoxification Potential of Micrococcus Strains and Plants for Bioremediate Organochlorine Herbicides ". International Journal of Innovative Approaches in Agricultural Research 3 (3):353-364. doi:10.29329/ijiaar.2019.206.1.

References
  1. Alcalde, M., M. Ferrer, F.J. Plou and A. Ballesteros (2006). Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends. Biotechnol., 24(6), 281–287.  [Google Scholar]
  2. Barrett, M. (2000). The role of cytochrome P450 enzymes in herbicide metabolism.Pages 25–37 in A. H. Cobbs and R. C. Kirkwood, eds.Herbicides and Their Mechanisms of Action. Sheffield, Great Britain: Sheffield Academic.  [Google Scholar]
  3. Behrens, M.R., M. Nedim, C. Sarbani, D. Razvan, W. Z. Jiang, B. J. La Vallee, P.L. Herman, T. E. Clemente and D. P. Weeks (2007). Dicamba Resistance: Enlarging and Preserving Biotechnology-Based Weed Management Strategies. Faculty Publications from the Center for Plant Science Innovation Science, 316(5828), 1185–1188.  [Google Scholar]
  4. Chang, S.W., S. J. Lee and C. H. Je (2005). Phytoremediation of atrazine by poplartrees: Toxicity, uptake, and transformation. J. Envıron. Sci. Heal. B., 40(6), 801–811.  [Google Scholar]
  5. Cindoruk, S.S. (2011). Atmospheric organochlorine pesticide (OCP) levels in a metropolitan city in Turkey. Chemosphere, 82(1), 78-87. [Google Scholar]
  6. EPA 3550C. (2007). Revision 3. Method for the ultrasonic extraction, U.S. Environmental  Protection Agency, Washington, DC. United States.  [Google Scholar]
  7. EPA 8081B. (2007). Revision 2. Method for Determination of Organochlorine Pesticides by  Gas Chromatography, U.S. Environmental Protection Agency, Washington, DC. United  States.  [Google Scholar]
  8. Fatoki, O. and R. Awofolu (2003). Methods for selective determination of persistent organochlorine pesticide residues in water and sediments by capillary gas chromatography and electroncapture detection. J. Chromatogr. A., 983(1-2), 225-236.  [Google Scholar]
  9. Garrison, A.W., V.A. Nzengung, J.K. Avants, J.J. Ellington, W.J. Jones, D. Rennels and N.L. Wolfe (2000). Photodegradation of p,p–DDT and the enantiomersof o,p–DDT. Environ. Sci. Technol., 34(9), 1663–1670.  [Google Scholar]
  10. Gregory, R.P.F. (1966). A rapid assay for peroxidase activity. Biochem J., 101(3), 582-583.  [Google Scholar]
  11. Jantunen, L.M., Bıdleman, T.F., Harner, T. and Parkhurst, W.J. (2000). Toxaphene, chlordane, other  organochlorine pesticides in Alabama air, Environ. Sci. Technol., 34(24), 5097-5105 [Google Scholar]
  12. Khatisashvili, G., M. Kurashvili and M. Gordeziani (1995). Isolation of plant microsomal fraction and characterization of its oxidative systems. Bulletin of the Georgian National Academy of Sciences, 152, 818-824. [Google Scholar]
  13. Kurashvili, M.V., G.S. Adamia, L.L.Amiranashvili, T.I. Ananiasvili, T.G. Varazi, M.V. Pruidze, M.S. Gordeziani and G.A. Khatisashvili (2016). Targeting of detoxification potential of microorganisms and plants for cleaning environment polluted by organochlorine pesticides. Ann. Agrar. Sci., 14, 222-226.  [Google Scholar]
  14. Kurashvili, M.V., G.S. Adamia, T.I. Ananiashvili, T.G. Varazi, M.V. Pruidze, M. S. Gordeziani and G.A. Khatisashvili (2014). Plants as tools for control and remediation of the environment polluted by organochlorine toxicants. Ann. Agrar. Sci., 12(3), 84-87.  [Google Scholar]
  15. Kvesitadze, G., G. Khatisashvili, T. Sadunishvili and J. J. Ramsden (2006). Biochemical Mechanisms of Detoxification: Basis of Phytoremediation, Springer, Berlin Heidelberg New York, 2006, p. 265.  [Google Scholar]
  16. Lanzarini, G., P. Pifferi  and A. Samorani (1972). Specifity of an o-diphenol oxidase from Prunus avium fruits. Phytochemistry, 11(1), 89-94.  [Google Scholar]
  17. Li, X., M. A. Schuler and M. R. Berenbaum (2007). Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol., 52, 231–253.  [Google Scholar]
  18. Schroder, P. and H. Rennenberg (1992). Characterization of glutathione Stransferase from dwarf pine needles (Pinus mugo Turra), Tree Physiology, 11(2), 151-160.  [Google Scholar]
  19. Scott, C., G. Pandey, C.J. Hartley, C.L. Jackson, M. J. Cheesman, M. C. Taylor, R. Pandey, J. L. Khurana, M. Teese, C. W. Coppin, K. M. Weir, R. K. Jain, R. Lal, R. J. Russell and J. G. Oakeshott (2008). The enzymatic basis for pesticide bioremediation. Indian J. Microbiol.,  48, 65–79.   [Google Scholar]
  20. Xia, H. and X. Ma (2006). Phytoremediation of ethion by water hyacinth (Eichhornia crassipes) from water. Bioresour. Technol., 97(8), 1050–1054.  [Google Scholar]