Most Viewed

1

Genetic Variability, Correlation and Path Coefficient Analysis in Seed Yield and Related Traits of Cowpea (Vigna Unguiculata (L.)Walp) Germplasm Accessions on High Altitude Area of Jos Plateau

Kwon-Ndung E.H. & Kwala T. D.

  |  DOI: 10.29329/ijiaar.2017.100.3

Manuscript Views: 121  |  Manuscript Download: 103

Abstract

A field experiment was carried out at Dagwom farm at National Veterinary Research Institute (NVRI) Vom, in Jos South Local Government area of Plateau state Nigeria (Lat.09044N, long.08047E, altitude 1293.2 m above sea level) in 2013 and 2014 rainy seasons, to evaluate the genetic variability, correlation and path coefficient analysis in seed yield and related traits of cowpea. The treatments consisted of eighty (80) cowpea germplasm accessions obtained from International Institute for Tropical Agriculture (IITA) Ibadan Nigeria. The experiment was laid out in a Randomized Complete Block Design (RCBD) in two replicates. The Analysis of Variance (ANOVA) showed significant difference at (P<0.01) among the entries for all the yield and related traits accessed. High phenotypic coefficient of variability (PCV) compared with genotypic coefficient of variability (GCV) coupled with low Environmental coefficient of variability (ECV) was observed for all the yield and related traits accessed. High broad sense heritability (H2B) and genetic advance (GAM (%) was observed for the entire yield and related traits accessed except days to maturity which recorded high heritability with moderate genetic advance. Significant positive correlation was observed between grain yield and number of pod per plant (r=0.572**), hundred seed weight (r=0.504**), pod length (r=0.523**), number of secondary branches per plant (r=0.450**), number of seed per pod (r=0.431**), number of primary branches per plant (r=0.339**) plant height (r=0.285*), suggests that improving any of these characters will boost grain yield of cowpea. Path coefficient analysis showed that, number of pod per plant (P=0.65), hundred seed weight (P=0.54), number of seed per pod ((P=0.29) number of secondary branches per plant ((P=0.16), plant height (P=0.05)), and pod length ((P=0.04) contributed directly to grain yield. The result from this study therefore revealed that hundred seed weight, number of pod per plant, number of secondary branches per plant, number of seed per pod, pod length and plant height recorded high genetic variability, heritability and genetic advance coupled with high significant genotypic correlation with grain yield and contributed directly to grain yield. Therefore, these characters should be considered when planning hybridization programme for cowpea yield improvement.

Keywords: Variability, cowpea, correlation, yield

References

  1. Adewale B.D, Dumet D.J, Vroh-Bi I, Kehinde O.B, Ojo D.K, Adegbite A.E and Franco J. (2012).Morphological diversity analysis of African yam bean and prospects of utilization in germplasm conservation and breeding.Gen. Res. Crop Evo. 59(5):927-936.
  2. Alidu, M.S., Atokple I.D.K. andAkromah  R. (2013): Genetic analysis of vegetative stage drought tolerance in cowpea. Greener J. of Agric. Sci. 3: 481-496
  3. Allard, R.W. 1960. Principles of plant breeding.New York; John Wiley and Sons Inc. 485 pp.
  4. Burton, G.W (1952). Quantitative inheritance in grasses. Proceedings of the 6th International Congress, 1: 277-283
  5. Denton O.A. and Nwangburuka C.C., (2011).Heritability, genetic advance and character association in six related characters of Solanum anguivi.Asian Journal of Agricultural Research 5: 201-207.
  6. El-Ahainy, A.A.H. (2012): Genetic studies on cowpea (Vigna unguiculata (L.) Walp) yield and quality characteristics. Ph.D. Thesis, Faculty of Agric. Minia, Minia Univ.
  7. Fana S.B., Pasquet, R. S. and Gepts P. (2004).Genetic diversity in cowpea (Vigna unguiculata (L.)Walp) as revealed by RAPD markers.Genetic Resources and Crop Evolution 51: 539-550.
  8. Genstat, 2007.Genstat for Windows, Discovery (3rd Ed) Lawes Agricultural Trust, Roth Amsted Experimental Station.UK.
  9. Hanson C.H., Robinson, H.F. and Comstock R.E.(1956). Biometric studies of yield segregating population in Korean lespedeza.Agron. J., 48: 268-272.
  10. IITA, (2009).International Institute of Tropical Agriculture Ibadan, Oyo State.Annual report on Cowpea production.
  11. Iqbal S., Tariq M., Tahira M.A., Anwar M. and Ayub M.S. (2003).Path coefficient analysis in different genotypes of soybean (Glycine max L. Merrill).Pak. J. Bio. Sci. 6(12):1085-1087.
  12. Johnson H.W., Robinson H. and Comstock R.F. (1955).Estimates of genetic and environmental variability in soybean.Agronomy Journal, 47: 314 – 318.
  13. Kutty C.N., Mili R. and Jaikumaran V. (2003).Correlation and path analysis in vegetable cowpea.Indian Journal of Horticulture 60: 257-261.
  14. Lesly, W.D. (2005). Characterization and Evaluation of Cowpea (Vigna unguiculata (L.)Walp).Germplasm.M.Sc. thesis. University of Agricultural Sciences, Dharwad  
  15. Manggoel W., Uguru M.I., Ndam O.N. and Desbak, M.A. (2012). Genetic variability, correlation and path coefficient analysis of some yield components of ten cowpea (Vigna unguiculata) (L.) Walpaccession.Journal of Plant Breeding and Crop science. 4(5), pp. 80-86.
  16. Sankie, L., Addo-Bediako, K.O. and Ayodele, V. (2012).Susceptibility of seven cowpea (Vigna unguiculata L. Walp) cultivars to cowpea beetle (Callosbruchus maculatres). Agric. Sci. Res. J., 2(2):65-69
  17. Shiringani, R.P. and Shimeles, H. A. (2011). Yield response and stability among cowpea genotypes at three planting dates and test environments. African Journal of AgriculturalResources 6(4): 3259- 3263.
  18. Sivasubramanian, S and Menon, M. (1973).Heterosis and inbreeding depression in rice.Madras Agricultural Journal, 60: 1139
  19. Tharanathan R.N, Mahadevamma S. (2003). Grain legume-a boon to human nutrition. Trends in Food Science and Technology 14(12):507-518

 

2

Genetic analysis of pollen viability: an indicator of heat stress in sunflower (Helianthus annuus L.)

Khuram Razaq, Saeed Rauf, Muhammad Shahzad, Ejaz Ashraf & Fawad Shah

  |  DOI: 10.29329/ijiaar.2017.100.5

Manuscript Views: 107  |  Manuscript Download: 86

Abstract

Pollen viability represents sporo-gametophytic tolerance to the heat stress. Therefore, pollen fertility index under heat stress can be exploited to differentiate resistant and susceptible genotypes.  Information relative to genetics of pollen viability is necessary to improve pollen viability under heat stress. Studies were initiated to develop and evaluate heat tolerant populations under controlled and field conditions. Result showed that pollen fertility index of genotypes was stable over the years. It showed moderate to high heritability, which was due to greater magnitude of genotypic effects in total phenotype. Studies showed that pollen fertility was primarily controlled by dominant type of genetic variability which showed that selection per se for the pollen fertility could be improved through recurrent selection. General combining analysis showed that gametophytic type of heat resistance was important in the inheritance of pollen viability. Heat resistance was dependent on the genotype of gametes as indicated from lack of relationship between mean performance of inbred line per se and their progenies for pollen viability.  

Keywords: Heat stress, reproductive fitness, pollen staining, floral head, sterility, abiotic stress, mobilization of reserve, gene action, dominance

References

  1. Abdul-Baki, A. A. (1992). Determination of pollen viability in tomatoes. J.Am. Soci. Hortic. Sci. 117, 473-476.
  2. Chatterjee, R., S. Sarkar and G.N. Narsemah Rao. (2014). Improvised Media for in vitro Pollen Germination of some species of Apocynaceae. Int. J.Environ. 3, 146-153.
  3. Clarke, H.J. and H.K.M. Siddique. (2004). Response of chickpea genotypes to low temperature stress during reproductive development. Field Crop Res. 90, 323-334.
  4. Coast, O., A.J.Murdoch, R.H.Ellis, F.R. Hay, and K.S.V.Jagadish. (2015). Resilience of rice (Oryza spp.) pollen germination and tube growth to temperature stress. Plant Cell Environ. DOI: 10.1111/pce.12475
  5. Das, S., P. Krishnan, M. Nayak and M.B. Ramakrishnan. (2014). High temperature stress effects on pollens of rice (Oryza sativa L.) genotypes. Environ Exp Bot. 2014. 101: 36-46.
  6. Dane, F.,A.G. Hunter, and O.L. Chambliss. (1991).  Fruit set, pollen fertility, and combining ability of selected tomato genotypes under high-temperature field conditions. J. Am. Soci. Hortic. Sci. 116: 906-910.
  7. Dudley, J.W., and R.H. Moll. (1969). Interpretation and use of estimates of heritability and genetic variances in plant breeding. Crop Sci 9: 257-262.
  8. Frescura, V.D., H.D. Laughinghouse, and T.S.Cantodorow. (2012). Pollen viability of Polygala paniculata L. (Polygalaceae) using different staining methods. Bio Cell 36: 143-145.
  9. Fu, G. F., S. Jian, J.Xiong, Y.R. Li, H.Z. Chen, M.K. Le, and L.X. Tao. (2011). Changes of oxidative stress and soluble sugar in anthers involve in rice pollen abortion under drought stress. Agric. Sci. China 10: 1016-1025.
  10. Gaaliche, B.,A. Majdoub, M. Trad, and M. Mars. (2013). Assessment of pollen viability, germination, and tube growth in eight Tunisian caprifig (Ficus carica L.) Cultivars. ISRN Agron.
  11. Harsant, J., L. Pavlovic, G. Chiu, S. Sultmanis, and T.L. Sage. (2013). High temperature stress and its effect on pollen development and morphological components of harvest index in the C3 model grass Brachypodium distachyon. J. Exp. Bot. 142-152.
  12. Hallauer, A.R., M.J. Carena, and J.D. Miranda. (2010). Testers and combining ability (pp. 383-423). Springer New York.
  13. Huang, Z., J. Zhu, X. Mu and J. Lin. (2004). Pollen dispersion, pollen viability and pistil receptivity in Leymus chinensis. Annal Bot. 93, 295-301.
  14. Ilgin, M., F. Ergenoglu, and S. Caglar. (2007). Viability, germination and amount of pollen in selected caprifig types. Pak. J. Bot. 39: 1-9.
  15. Kalyar, T., S. Rauf, J.A.T. da Silva, S. Haidar, and Z.Iqbal. (2013). Utilization of leaf temperature for the selection of leaf gas-exchange traits to induce heat resistance in sunflower (Helianthus annuus L.). Photosynthetica. 51: 419-428.
  16. Kalyar, T., S. Rauf, J.A.T. Teixeira Da Silva, and M.Shahzad. (2014). Handling sunflower (Helianthus annuus L.) populations under heat stress. Arch. Agronomy Soil. Sci. 60, 655-672.
  17. Kempthorne, O. (1957). An introduction of genetic statistics, John Willey & Sons Inc. New York, USA, pp. 468-473. 
  18. Murthy, M.N.K., Y.A.N. Reddy and K. Viruakshappa. (1994). Development of suitable germination medium for trinucleate pollen grains. An illustration with sunflower. J. Oilseeds. Res. 11(2):304-307. 
  19. Nguyen, C. T., V. Singh, E. van Oosterom, D. Jordan, S. Chapman, and G. Hammer. (2012). High temperature effects on development and floret sterility of diverse sorghum lines. In 16th Australian Agronomy Conference. Australian Society of Agronomy.
  20. Nguyen, G.N., and B.G. Sutton. (2009). Water deficit reduced fertility of young microspores resulting in a decline of viable mature pollen and grain set in rice. J. Agron. Crop Sci. 195, 11-18.
  21. Nguyen G.N., and B.G. Sutton. (2009). Water Deficit Reduced Fertility of Young Microspores Resulting in a Decline of Viable Mature Pollen and Grain Set in Rice. J.  Agron. Crop Sci. 195: 11–18.
  22. Nguyen, H.T, and Blum, A. (Eds.). (2004). Physiology and biotechnology integration for plant breeding. CRC Press.
  23. Patel, R.G.,and A.U. Mankad. (2014). In Vitro Pollen Germination: A Review. Int. J. Sci. Res. 3, 304-307.
  24. Pressman, E., M. M. Peet, and D. M. Pharr. (2002). The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Annals Bot. 90: 631-636.
  25. Rauf, S. (2008). Breeding sunflower (Helianthus annuus L.) for drought tolerance. Commun. Biom. Crop Sci. 3: 29-44.
  26. Rodriguez-Riano, T., and A. Dafni. (2010). A new procedure to asses pollen viability. Sex. Plant Reprod. 12: 241-244.
  27. Sarhadi, E., M.M. Bazargani, A.G. Sajise, S. Abdolahi, N.A. Vispo, M.Arceta, and G.H. Salekdeh. (2012). Proteomic analysis of rice anthers under salt stress. Plant Physiol Bioch. 58, 280-287.
  28. Schoper, J.B., R.J.Lambert, and B.L. Vasilas. (1987). Pollen viability, pollen shedding, and combining ability for tassel heat tolerance in maize. Crop Sci. 27: 27-31.
  29. Satish, D.,and R.L. Ravikumar. (2010). Standardization of in vitro pollen germination media in selected varieties of cotton and tomato. Karn. J Agric. Sci. 2010. 23:317-319.
  30. Sato, S. M.M.Peet, and J.F.Thomas. (2002). Determining critical pre‐and post‐anthesis periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures. J. Exp. Bot. 53: 1187-1195.
  31. Sulusoglu, M., and A. Cavusoglu (2014). In Vitro Pollen Viability and Pollen Germination in Cherry Laurel (Prunus laurocerasus L.). Scient. World J. 5:161-169.
  32. Vaughton, G., and M. Ramsey. (1991). Floral biology and inefficient pollen removal in Banksiana spinulosa var. neoanglica (Proteaceae). Aust. J. Bot.39,167-77
  33. Verhoeven, K.J.F., J.L. Jannink and L.M. McIntyre. (2006). Using mating designs to uncover QTL and the genetic architecture of complex traits. Heredity. 96, 139-149.

 

3

The determining performances of some onion (Allium cepa l.) varieties in Absheron conditions

Nesrin Huseynzade

  |  DOI: 10.29329/ijiaar.2017.100.1

Manuscript Views: 93  |  Manuscript Download: 79

Abstract

The study covers the performances of onion (Allium cepa L.) varieties introducted from Turkiye. Collecting and analysing of gene pool materials focusing to onion is so important for actual seed selection and perspective forms. The main purpose of the study is collecting gene pool materials spesific of onion plant (Allium cepa L.) according to economic indicators, quality and yield traits and phenological observations over 12 different varieties (Barakat, Mor Soghan, Beyaz soghan, Tekirdagh soghan, Casta, Beta Panko, Red Amposta, Betaki, Panko, Metan, Erkenci, Valenciana) bringing from different regions of Turkey. Based on study results, there were big differences among varieties in the Azerbaijan conditions.

Keywords: Onion, varieties, biological, phenological, economy, gene pool

References

  1. Alekseeva M.V. (1960) Cultured onions. -M .: Selkhozizdat, 303pp .
  2. Aliyev Sh, Dunyamaliev M.Z. (1992) Traditional vegetable crops in Azerbaijan. Publishing house of the Ministry of Agriculture of Azerbaijan. Baku, 114 p.
  3. Ibrahimov AS, Nabiyeva F., Guliyeva S.Q., Idadli O.B. (2011) Onion species of Nakhchivan MR flora. Their natural reserve and protection. ANAS news. Biological sciences. Vol. 66, No.2, Baku-Elm, 64-68 p.
  4. Kokorev V.A. (2007) Onion, garlic and decorative bulbs/ V.A. Kokorev, I.V. Titov. M., 208 p.
  5. Mccallum J., Havey M.J., Shigyo M., Mcmanus M.T. (2008) Molecular approaches to characterizing and improving bulb composition in onion. Acta Hortic 770, 147-151 p.
  6. Teena, M.T., K.R. Soumya, K.S. Sudha. (2016) Cytotoxic effect of sewage effluent on root tip cells of Allium cepa L. South Ind. J. Biol. Sci., 2 (1), 18-23 p.
4

RFLP- Based Gel Electrophoregram of DNA Primers for Acha (Fonio) Characterisation From Nigeria

Nyam D.D., Kwon-Ndung E.H. & Wuyep A. P.

  |  DOI: 10.29329/ijiaar.2017.100.6

Manuscript Views: 61  |  Manuscript Download: 71

Abstract

The evaluation of the molecular diversity of Acha (Digitaria sp.) was carried out using Microsatelite primer combinations specially designed forDigitaria exilis. The amplifiedmicrosatellite fragments were also used in the other species of Digitaria namely; Digitaria barbinodis and Digitaria iburua.DNA extraction was carried and Agarose Gel Electrophoresis was conducted on the restricted amplified DNA extracts using microsatellite primers developed for Digitaria exilis. RFLPs clearly suggest a distinct separation of the three species of Acha at the molecular level (D. iburua, D. exilis and D. barbinodis) demonstrating the extent of their genetic differences at the DNA level.

Keywords: Gel, electrophoresis, RFLP, Acha

References

  1. Adoukonou-Sagbadja, H. (2010). Genetic characterization of traditional fonio millets (Digitaria exilis, D. iburua STAPF) landraces from West-Africa: Implications for conservation and breeding. Phd Dissertation. Justus-Liebig University Giessen.
  2. Adoukonou-Sagbadja, H., Schubert, V., Dansi, A., Jovtchev, G., Meister, A., Pistrick, K., Akpagana, K. & Friedt, W. (2007). Flow cytometric analysis reveals different nuclear DNA contents in cultivated fonio (Digitaria sp.) and some wild relatives. Plant Systematics and Evolution, 267: 163-176.
  3. Agrama, H. A. & Tuinstra, M. R. (2003). Phylogenetic diversity and relationships among sorghum accessions using SSRs and RAPDs. African Journal of Biotechnology, 2: 334 – 340.
  4. Akkaya, M. S., Bhagwat, A. A. & Gregan, P. B. (1992). Length polymorphism of simple sequence repeat DNA in soybean. Genetics, 132: 1131-1139. 
  5. Aldrich, P. R., Doebley, J., Schertz, K. F. & Stec, A. (1992). Patterns of allozyme variation in cultivated and wild Sorghum bicolor. Theoretical and Applied genetics, 85: 293-302. 
  6. Anand, P., Samit, R. & Amit, R. (2014). Molecular markers in phylogenetic studies-A review. Retrieved June 25, 2016, from http://dx.doi.org/10.4172/2329-9002.1000131.
  7. Archak, S., Gaikwad, A. B., Gautam, D., Rao, E. V. V. B., Swamy, K. R. M & Karihaloo, J. L. (2003). Comparative assessment of DNA fingerprinting techniques (RAPD, ISSR and AFLP) for genetic analysis of cashew (Anacardium occidentale L.) accessions of India. Genome, 46: 362-369.
  8. Arumuganathan, K. & Earle, E. D. (1991). Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter, 9: 208–218.
  9. Avise, J. C. (2004). Molecular markers, natural history and evolution. (2nd Edition) Chapman & Hall Inc., New York, 541 p..
  10. Ayana, A., Bryngelsson, T. & Bekele, E. (2000). Genetic variation of Ethiopian and Eritrean sorghum [Sorghum bicolor (L.) Moench.] germplasm assessed by random amplified polymorphic DNA (RAPD). Genetic Resources and Crop Evolution, 47: 471-482. 
  11. Bänfer, G., Fiala, B., Weising, K. (2004). AFLP analysis of phylogenetic relationships among myrmecophytic of Macaranga (Euphorbiaceae) and their allies. Plant Systematics and Evolution, 249: 213-231.
  12. Banjo, A. (1988). Keynote address delivered at the Proceeding of an International Conference on crop Genetic Resources of Africa. 11th - 20th October.  Genetics, 4, 237-24.
  13. Barnaud, A., Vignes, H., Risterucci, A., Noyer, J., Pham, J., Blay, C., Buiron, M., Vigouroux, Y. & Billot, C. (2012). Development of Nuclear Microsatellite Markers for the Fonio, Digitaria exilis (Poaceae), an understudied West African Cereal. Retrieved February 16, 2014, from e105-e107 doi:10.3732/ajb.1100423.
  14. Barow, M. & Meister, A. (2002). Lack of correlation between AT frequency & genome size in higher plants and the effect of nonrandomness of basesequences on dye binding. Cytometry, 47: 1–7.
  15. Barrett, B. A. & Kidwell, K. K. (1998). AFLP-based genetic diversity assessment among wheat cultivars from the Pacific Northwest. Crop Science, 38: 1261-1271. 
  16. Bonin, A., Pompanon, F. & Taberlet, P. (2005).Use of Amplified Fragment Length Polymorphism (AFLP) markers in surveys of vertebrate diversity. Methods in Enzymology, 395: 145-161.
  17. Borlaug, N. E. (1968). Proceedings of 3rd International Wheat genetics Symposium. Canberra, 1-36.
  18. Broun, P. & Tanksley, S. D. (1996). Characterization and genetic mapping of simple repeat sequences in the tomato genome. Molecular Genetics, 250: 39-49. 
  19. Brown, S. M., Hopkins, M. S., Mitchell, S. E., Senior, M. L., Wang, T. Y., Duncan, R. R., Gonzalez-Candelas, F. & Kresovich, S. (1996). Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum [Sorghum bicolor (L.) Moench]. Theoretical and Apllied genetics 93: 190-198. 
  20. Burr, B. (1994). Some concepts and new methods for molecular mapping in plants. In: Philips, R. L. & Vasil, I. K. (eds.) DNA-based Markers in Plants. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 1-7. 
  21. Busch, R. H. & Rauchi, T. L. (1993). Agronomic performance of tall versus short semi dwarf lines of spring wheat. Crop Science, 33: 941-943.
  22. Cao, W., Scoles, G., Hucl, P. & Chibbar, R. N. (1999). The use of RAPD analysis to classify Triticum accessions. Theoretical and Applied Genetics, 98: 602-607. 
  23. Caponio, I. & Rua, G. H. (2003). Reproductive biology of Digitaria bicornis, a common weed of northeastern Argentina. Revista Científica Agropecuaria, 2: 21-27.
  24. Carr, J., Xu, M., Dudley, J. W. & Korban, S. S. (2003). AFLP analysis of genetic variability in New Guinea impatiens. Theoretical and Applied Genetics,106: 1509-1516.
  25. Cervera, M. T., Cabezas, J. A., Sancha, J. C., Martínez de Toda, F. & Martínez-Zapater, J. M. (1998). Application of AFLPs to the characterization of grape vine (Vitis vinifera L.) genetic resources. A case study with accessions from Rioja (Spain). Theoretical and Applied Genetics, 97: 51-59. 
  26. Chandler, R. F. Jr. (1968). Science for better living. U.S. Department of Agriculture Handbook.
  27. Chowdari, K. V., Davierwala, A. P., Gupta, V. S., Ranjekar, P. K. & Govila, O. P. (1998a). Genotype identification and assessment of genetic relationships in pearl millet [Pennisetum glaucum (L.) R. Br.] using microsatellites and RAPDs. Theoretical and Applied Genetics, 97, 154-162. 
  28. Chowdari, K. V., Venkatachalam, S. R., Davierwala, A. P., Gupta, V. S., Ranjekar, P. K. & Govila, O. P. (1998b). Hybrid performance and genetic distance as revealed by the GATA microsatellite and RAPD markers in pearl millet. Theoretical and Applied Genetics, 97: 163-169. 
  29. Danna, K. & Nathans, D. (1971). Specific changes of simian virus 40 DNA by restriction endonuclease of Hemophilus influenza. Proceedings of National Academy of  Science, 68: 2913-2917.
  30. Dauda, A. & Luka, D. (2003). Status of Acha (Digitaria exilis) production in Bauchi State, Nigeria. In: proceedings of the first National Acha stakeholders workshop at PADP, Jos (9-11th March 2003). Kwon-Ndung, E. H., Bright, E. O. & Vodouhe, R. (eds). 
  31. de Oliveira, A. C., Richter, T. & Bennetzen, J. L. (1996). Regional and racial specifications in sorghum germplasm assessed with DNA markers. Genome,39, 579-587. 
  32. Dean, R. E., Dahlberg, J. A., Hopkins, M. S., Mitchell, S.E., & Kresovich, S. (1999). Genetic Redundancy and diversity among ‘Orange’ accessions in the U.S. national sorghum collection as assessed with simple sequence repeat (SSR) markers. Crop Science, 39, 1215-1221. 
  33. De-Bustos, A., Soler, C. & Jouve, N. (1999). Analysis by PCR-based markers using designed primers to study relationships between species of Hordeum (Poaceae). Genome, 42, 129-138. 
  34. Edna, S. & Victor, H. A. (2008). History, objectivity, and the construction of molecular phylogenies. Stud. Hist. Phil. Biol. and Biomedical Science, 39, 451 – 468.
  35. Excoffier, L., Smouse, P. E. & Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131, 479-491.
  36. Fahima, T., Sun, G.L., Beharav, A., Krugman, T., Beiles, A. & Nevo, E. (1999). RAPD polymorphism of wild emmer wheat populations, Triticum dicoccoides, in Israel. Theoretical and Applied genetics,98, 434-447. 
  37. Feuk, L., Carson,  A. R. & Scherer, S. W. (2006). Structural variation in the human genome. Nature Review of Genetics,7, (2).85–97
  38. Gao, L. Z. & Hong, S. G. D. (2000). Allozyme variation and population genetic structure of common wild rice Oryza rufipogon Griff. in China. Theoretical and Applied genetics,101, 494-502.
  39. Gerber, S., Mariette, S., Streiff, R. & Kremer, A. (2000). Comparison of microsatellites and AFLP markers for parental analysis. Molecular Ecology,9, 1037-1048.
  40. Haq, N. & Ogbe, F. D. (1995). Fonio (Digitaria exilis and Digitaria iburua). In: Cereals and pseudocereals, boundary row, Chapman & Hall, London, Chap 5, 2–6.
  41. Hayward, M. D. & Hacker, J. B. (1980). Genetic control of some esterase isozymes of Digitaria species, and their utility in the identification of hybrids. Euphytica,29, 347-356.
  42. Henrard, J. T. (1950). Monograph of the genus Digitaria. Leiden Univ. Press, Leiden.
  43. Hilu, K. W. (1995). Evolution of finger millet: evidence from random amplified polymorphic DNA. Genome,38, 232-238.
  44. Hongtrakul, V., Huestis, G. M., & Knapp, S.  J. (1997). Amplified fragment length polymorphisms as a tool for DNA fingerprinting sunflower germplasm: Genetic diversity among oilseed inbred lines.  95, 400-407. 
  45. Ibrahim, A. (2001). Hungry rice (Fonio): A neglected cereal crop. NAQAS Newsletter, Vol. No. 4 – 5.
  46. Jideani, I. A. (1999). Traditional and possible technological uses of Digitaria exilis (Acha) and Digitaria iburua (iburu): a review. Plant Foods for Human Nutrition,54, 363-374.
  47. Jones, C. J., Edwards, K. J., Castiglione, S., Winfield, M. O., Sala, F., Van-der-Weil, C., Vosman, B. L., Matthes, M., Daly, A., Brettschneider, R., Bettini, P., Buiatti, M., Maestri, E., Marmiroli, N., Aert, R. L., Volckaert, G., Rueda, J., Vazquez, A. & Karp, A. (1998). Reproducibility testing of RAPDs by a network of European laboratories. In: Karp A, Isaac P. G., Ingram, D. S. (eds.) Molecular tools for screening biodiversity, Chapman & Hall, London, UK, pp 176-179. 
  48. Kimberling, D. N., Ferreira, A. R., Shuster, S. M. & Keim, P. (1996). RAPD marker estimation of genetic structure among isolated northern leopard frog populations in southwestern USA. Molecular Ecology, 5, 521-529.
  49. Kuta, D. D., Kwon-Ndung, E., Dachi, S., Bakare, O. & Ogunkanmi, L. A. (2005). Optimization of protocols for DNA extraction and RAPD analysis in West-African fonio (Digitaria exilis and Digitaria iburua) germplasm characterization. African Journal of Biotechnology,4, 1368-1371.
  50. Kuta, D. D., Kwon-Ndung, E., Dachi, S., Ukwungwu, M. & Imolehin, E. D. (2003). Potential role of biotechnology tools for genetic improvement of lost crops of Africa: the case of fonio (Digitaria exilis and Digitaria iburua). African Journal of Biotechnology,2, 580-585.
  51. Kwon-Ndung, E. H. & Misari, S. M. (1999). Overview of research and development of fonio (Digitaria exilis Kippist Stapf) and prospect for improvement in Nigeria. In: Genetics and food security in Nigeria. GSN Publication, Nigeria, P. 71 – 76.
  52. Kwon-Ndung, E. H., Misari, S. M. & Dachi, S. N. (1998). Collecting germplasm of Acha, Digitaria exilis (Kipp.) Stapf, accessions in Nigeria. Plant Genetic Resources Newsletter,116, 30–31.
  53. Morden, C. W., Doebley, J. F. & Schertz, K. F. (1989). Allozyme variation in old world races of Sorghum bicolor (Poaceae). American Journal of Botany,76, 247-255. 
  54. Morgante, M. & Olivieri, A. M. (1993). PCR-amplified microsatellites as markers in plant genetics. Plant Journal, 3, 175-182. 
  55. Mullis, K. B., Faloona, F., Scharf, S., Saiki, R., Horn, G. & Erlich, H. A. (1986). Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp. Quantitative Biology 51: 263-273
  56. NRC. (1996). Lost crops of Africa volume 1: Grains national Research Council. National Academy Press. Washington, DC, pp 59-75.
  57. Portères, R. (1946). L’aire culturale du Digitaria iburua Stapf, cereal mineure de l’ouest-Africain.L’Agronomie Tropicale 1:589–592.
  58. Portères, R. (1955). African Cereals: Eleucine, Fonio, Black Fonio, Teff, Brachiaria,Paspalum, Pennisetum and African Rice. In: Harlan JR, de Wet JMJ, Stemler ABL (eds) Origins of African plant domestication. Mouton Publishers, The Hague, pp 498.
  59. Russell, J. R., Fuller, J. D., Macaulay, M., Hatz, B. G., Jahoor, A., Powell, W. & Waugh, R. (1997). Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theoretical and Applied genetics,95, 714-722. 
  60. Saghai-Maroof, M. A., Biyashev, R. M., Yang, G. P., Zhang, Q. & Allard, R. W. (1994). Extraordinarily polymorphic  microsatellite DNA in barley: Species diversity, chromosomal locations, and population dynamics. Proceedings of National Academy of Science, (USA) 91, 5466-5470. 
  61. Semagn, K., Bjørnstad, Å. & Ndjiondjop, M. N. (2006). An overview of molecular marker methods for plants. African Journal of Biotechnology,5, 2540-2568.
  62. Smith, S. & Helentjaris, T. (1996). DNA fingerprinting and plant variety protection. In: Paterson, A. H. (Ed.) Genome mapping in plants, Academic Press, San Diego, CA USA, pp 95-110. 
  63. Stankiewicz, P. &  Lupski, J. R. (2002). Genome architecture, rearrangements and genomic disorders. Trends in Genetics 18, (2). 74–82.
  64. Stapf, O. (1915). Iburu and Fundi, two cereals of Upper Guinea (Digitaria iburua, D. exilis). Kew Bulletin, 8, 381-386.
  65. Struss, D. & Plieske, J. (1998). The use of microsatellite markers for detection of genetic diversity in barley populations. Theoretical and Applied genetics,97, 308-315. 
  66. Temple, V. J. & Bassa, J. D. (1991). Proximate chemical composition of fonio (Digitaria exilis) grain. Journal of Science, Food and Agriculture,56, 561-564.
  67. Zhang, Q., Liu, K. D., Yang, G. P., Saghai-Maroof, M. A., Xu, C. G. & Zhou, Z. Q. (1997). Molecular marker diversity and hybrid sterility in indica-japonica rice crosses. Theoretical and Apllied genetics,95, 112-118. 
  68. Zhu, J., Gale, M. D., Quarrie, S., Jackson, M. T. & Bryan, G. J. (1998). AFLP markers for the study of rice biodiversity. Theoretical and Applied genetics,96, 602-61.
5

Characterization and evaluation data of some leguminous plants stored in National Genebank

Mirzaliyeva I.A., Asadova A. & Akparov Z.I.

  |  DOI: 10.29329/ijiaar.2017.100.4

Manuscript Views: 57  |  Manuscript Download: 62

Abstract

Characterization of plant genetic resources is the major description of germplazm for breeding. Their morpho-agronomic, biochemistry and molecular evoluation also plays an important role for creation new valuable varieties. With the support of information technologies it can be more effective collection, conservation and use of characterization and evluation data as a database format. So, for this purpose there were created characterization databases on leguminous plants within the structure of Central Databases System. As we mentioned above characterizing of each sample with more traits is very important for the breeding issues. We have tried to achieve it in our research also. For characterization and evaluation data we used international plant descriptors prepared by ICARDA (International Center of Agriculture in Dry Areas), FAO and Bioversity International .

It was created the leguminous plants (bean, cow pea, chickpea, horse bean, grass pea) databases by proper database management systems within the structure of Central Database (CDB) on PGR of Azerbaijan based on MS FoxPro. Evaluated samples were taken from the National Genebank collection by proper crop groups.

Keywords: germplasm, characterization, evaluation, legumineus plants, database

References

  1. Training Manual. (2009). A Training Module for the International Course on Plant Genetic Resources and Genebank Management, Suwon, Republic of Korea on 7-18 September 2009. 
  2. Akparov Z.İ. and Mammadov A.T. (2007). The information system of Azerbaijan ex situ genetic resources. ANAS Proceedings of Biological science sessions, N3-4, Baku: “Elm” p.35-48.
  3. Akparov Z.İ., and Mammadov A.T. (2007). The major scientific strategies of plant genetic resources. Azerbaijan Agrarian, Baku, N1-3, s.120-124. (in Azeri) 
  4. Aliyev J.A., Akparov Z.İ., Plant genetic resources of Azerbaijan. Proceedings of National Academy of Baku, 2002, N1-6, p 57-68. (in Azeri)
  5. Batygin N.F. (1986). Ontogenesis of the higher plants. Agroprodpublish, 100 p.  (in Russian)
  6. Dias, S.R. and S. Gaiji (2005) – EURISCO: A window on Europe’s plant genetic diversity: Overview of European CWR collections, BI, Rome, Italy. 
  7. FAO/IPGRI Multi-Crop Passport Descriptors list, December 2001. 
  8. Germier Ch.U., Frese L. (2001). A data model for the evaluation and characterization of plant genetic resources. “Broad Variation and Precise Characterization – Limitation for the Future”. Poznan. Poland, pp.174-177.
  9. ISOPlexis Genebank Manual. (2017).   http://www3.uma.pt/isoplexis/prog_investig_car_rec_fit_eng.html  
  10. Karatigin S., Тikhinov А., Тikhinov L. (2000). Visual FoxPro 6. ZAO «Publishing house BINOM»,  (in Russian) 
  11. Khanna P.P. and Singh Neeta. (2017). Conservation of Plant Genetic Resources.  www.bioversityinternational.org/fileadmin/bioversity/publications/Web_version/174/ch13.htm 
  12. Kobyzova L.N., Tertyshny A.V., Goncharova E.A. (2013). Perspective initial material of leguminous cultures in NTsGRRU for getting new varieties of various groups of ripeness. Leguminous and cereals plants, Eagle: VNIIZBK, 2: (6), p. 96-99. (in Russian)
  13. Konopka J., Mammadov A.T. (2006). The Regional Database of PGR in Central Asia and Caucasus. I. International Scientific Conference “Genetic Resources of Biodiversity”, Baku, “Elm”, p.257. 
  14. Mammadov A.T., Mirzaliyeva I.A. (2006) The analyses of collecting site data in the Database of National Genbank. I. International Scientific Conference “Genetic Resources of Biodiversity”, Baku, “Elm”, p.255. (in Azeri)
  15. Mirzaliyeva I.A., Mammadov A.T, Mammadova S.M. (2010). Characterization database of Genebank collections. Proc. of Genetic Resources Institute of ANAS, II vol., Baku, Elm, p. 356. 
  16. Omelyanyuk L.V., Asanov A.M. (2006) Study of pea varieties of VIR world collection in the conditions of the Southern forest-steppe of the Western Siberia / Siberian messenger of agricultural sciences, Novosibirsk, №1, p. 17-22. (in Russian)
  17. Sosinsky B. (2000). Prossessing application in Visual FoxPro 5 sphere. Translation from eng.. Kiev: «Dialektika», p. 448. (in Russian)
  18. Stephanie L. (2001). Greene. Improving the quality of passport data to enhance germplasm use and management.  PGR Newsletter, FAO-IPGRI, Published in Issue No.125, , p.1-8.
  19. Vavilov V.I. (1965). Problems of origin, genetics, selection of plants, crop breeding and agronomics. Select. Vol. 5., M.-L., T.5, p.272-27. (in Russian).

 

6

Assessment of Nitrogen and Phosphorous Applications for Yield Potential of Guar Strains Under Irrigated Conditions

Muhammad Azeem Ur Rahman Khalid Khalid

  |  DOI: 10.29329/ijiaar.2017.100.2

Manuscript Views: 49  |  Manuscript Download: 61

Abstract

The productive efficiency of two guar varieties BR-2017 and BR-99 was studied with variable nitrogen and phosphorous levels including 0-0, 0-60, 15-60, 30-0, 30-30, 30-60, 30-90 and 45-60 NP kg ha-1during two sowing seasons 2015 and 2016 at Agriculture Research Station, Bahawalpur. The results showed that BR-2017 performed better than the BR-99. Variable levels of nitrogen and phosphorous also enhanced the yield of guar. The results indicated that maximum average grain yield of guar 2544 kg ha-1 was recorded in BR-2017  with NP dosage of 30:60 kg ha-1 nitrogen and phosphorous that was non-significantly different (2457.5 kg ha-1) from  NP level of 30:90 kg ha-1 recorded from same variety. Results indicated that ‘BR-2017’ was more receptive to fertilizer application than the BR-99. 

Keywords: Cluster Bean, Nitrogen, Phosphorous, Varieties, Split Plot Design, ANOVA, LSD.

References

  1. Ashraf, M. Y., K. Akhtar, G. Sarwar and M. Ashraf. (2005). Role of rooting system in salt tolerant potential of different guar accessions. Agron. Sustain. Dev., 25: 243-249
  2. Alexandar, W. L., D. A. Buck and R. A. Backhaus. (1988). Irrigation water management of guar seed production. Agron. J., 80: 447- 453.
  3. Ali, L., A.R. Chaudry and A.H. Shah. (1984). Correlation between yield and yield component in wheat. J. Agric. Res., 22: 279–83.
  4. Bashir, A., M. Yaqoob and M. Rahim. (2006). Karak-2, a new high yielding variety of chickpea for rain fed ecologies of NWFP. Indus J. Pl. Sci., 5: 639–41.
  5. Douglas, C. A. (2005). Evaluation of guar cultivars in central and southern queensland. A report for the rural industries research and development corporation. Pp:3.
  6. Elsheikh, E. A. E. and K. A. Ibrahim. (1999). The effect of Bradirhizobium inoculants on yield and seed quality of guar (Cyamopsis tetragonoloba L.). Food Chemistry, 65: 183-187.
  7. Farencois, L. E., T.  J. Donovan and E. V. Maas. (1990). Salinity effects on emergence, vegetative growth and seed yield of guar. Agron. J., 82: 587-592. 
  8. Fatima, Z., M. Zia and M. F. Chaudhary. (2006). Effect of rhizobium strains and phosphorus on growth of soybean (Glycine max) and survival of rhizobium and P solubilizing bacteria. Pak. J. Bot. 38: 459- 464.
  9. Joshi, N. L. and P. C. Mali. (2004). Effect of application of phosphorus and time of harvest on seed, crude protein and gum yield of cluster bean. J. Arid Legumes. 1:27-3.
  10. Jukanti, A., R. Bhatt, R. Sharma and R. Kalia. (2015). Morphological, agronomic, and yield characterization of cluster bean (Cyamopsis tetragonoloba L.) germplasm accessions. J. Crop Sci. Biotechnol., 18: 83-88.
  11. Giller, K. E. and G. Cadisch. (1995). Future benefits from biological nitrogen fixation: An ecological approach to agriculture. Plant Soil. 174: 255- 277.
  12. Herridge, D. F., O. P. Rupela, R. Sarraj and D. P. Beck. (1993). Screening techniques and improved biological nitrogen fixation in cool season legumes. Euphytica. 1: 1-14.
  13. Kasole. K.E., S.D. Kalke, S.M. Kareppa and K.K. Khade. (1995). Response of chickpea (Cieer arietium L.) to different fertilizer levels. plant population and weed management on cultivator's field in north eastern parts of Kolhapur. Maharashtra. Indian J. Agron. 40: 217-219.
  14. Kays, S. E., J. B. Morris and Y. Kim. (2006). Total and soluble dietary fiber variation in [Cyamopsis tetragonoloba (L.) Taub.]  (Guar) genotypes. J. Food Quality, 29:383–391
  15. Khan, H. R., A. M. Haqqani, M. A. Khan and B. A. Malik. (1992). Biological and chemical fertilizer studies in chickpea grown under arid conditions of Thai. Sarhad J. Agri. 8: 321-327.
  16. Kurhade. N. G., L. A. Deshpande and K. T. Nagre. (1994). Effect of nitrogen and phosphorus on the yield and quality of gram cultivars. J. Maharashtra Agri. Univ. 19: 277-278.
  17. Lynda, J. Q., E. A. H. Jra and G. V. O. Jra. (1984). Nodulation and nitrogen fixation by arrow leaf clover: Effects of phosphorus and potassium. Soil Biol. Bioch. 16: 589-594.
  18. Mehta, D. R. and C. V. Ramakrishanan. (1957). Studies of guar seed (Cyamopsis psoralioides). Journal of American Oil Chemistry Society, 34: 459-461.
  19. McKenzie, B. A., M. Andrews. A. Z. Ayalsc« and J. R. Stokes. (1992). Leaf growth and canopy development in chickpea. Proc. Annual Conference. Agronomy Society or New Zealand. 22: 121-125.
  20. Morris, J. B. (2004). Legumes: nutraceutical and pharmaceutical uses. In: Goodman RM (ed) Encyclopedia of plant and crop science. Marcel Dekker, New York, pp 651–655.
  21. NFDC. (1994). Sulphur status and crop response in Pakistan soils. NDFC publication No.2/94, NDFC, Islamabad.
  22. Rahman, M. M., M. M. H. Bhuiyan, G. N. C. Sutradhar, M. M. Rahman and A. K. Paul. (2008). Effect of phosphorus, molybdenum and rhizobium inoculation on yield and yield attributes of mungbean. Int. J. Sustain. Crop Prod. 3:26-33.
  23. Shah. S. H., D. F. Khan and M. S. Madaui. (1994). Effect or different rhizobial strains on the perfonuancc of two chickpea cultivars under field conditions. Sarhad J. Agric. 10: 103-107.
  24. Steel. R. G. D. and I. H. Torrie. (1984). Principles and Procedures of Statistics. 2nd ed. McGraw Hill Book Co lnc. Singapore: 172-177.
  25. Tariq, S., S. Ali and S. S. Ijaz. (2007). Improving nitrogen fixation capacity and yield on mung bean and mash bean by phosphorous management in pothowar. Sarhad J. Agric. 23:1027-1032.
  26. Omer, E. A., A. Fattah, M. Razin and S. S. Ahmed. (1993). Effects of cutting, phosphorus and potassium on guar (Cyamopsis tetragonoloba) in newly claimed soil in Egyptian. Plant Food for Human Nutrition, 47: 277-284.
  27. Paleg, L. G. and D. Aspinal. (1981). The physiology and biochemistry of drought resistance in plants. Academic press, Sydney, Australia. pp. 251-252
  28. Patel, P. C. and A. V. Kotecha. (2006). Effect of phosphorus and potassium on growth characters, forage yield, nutrient uptake and quality of Lucerne (Medicago sativa L.). Ind. J. Agron. 51: 242-244.
  29. Pathak, R., S. K. Singh, M. Singh and A. Henry. (2010). Molecular assessment of genetic diversity in cluster bean (Cyamopsis tetragonoloba) genotypes. J. Genetics., 89: 243-246.
  30. Undersander, D. J., D. H. Putnam, A. R. Kaminski, K. A. Kelling, J. D. Doll, E. S. Oplinger  and J. L. Gunsolus. (1991). Guar. In: Alternative Field Crops Manual. Uni. of Wisconsin-Extension. http://www.hort.purdue.edu/newcrop/afcm/guar. html.
  31. Wetselaar, R. (1967). Estimate of nitrogen fixation by four legumes in a dry monsoonal area north-western Australia. Australian Journal of Experimental Agriculture and Animal Husbandry, 7: 518-522.
  32. Whistler, R. I. and T. Hymowitz. (1979). Guar: agronomy, production, industrial use, and nutrition.       Purdue University Press, West Lafayette, Indiana, USA. 
  33. Yaqoob, M., M. Mansoor, Najibullah and Nasirudin, (2005). A high yielding lentil cultivar for rainfed ecologies of NWFP. Indus J. Pl. Sci., 4: 314–8
7

Evaluation of Different Isolates of Entomopathogenic Fungi against Metopolophium dirhodum (Walker) (Homoptera: Aphididea) from Constantine, Algeria

Abdelazız Ouidad, Mohamed Morad Senoussı, Amar Oufroukh, Ali Kemal Birgücü, İsmail Karaca, Fayza Kouadrı & Abderrahmane Benseguenı

  |  DOI: 10.29329/ijiaar.2018.133.4

Manuscript Views: 33  |  Manuscript Download: 44

Abstract

The aim of the present study was to investigate the effect of seven entomopathogenic fungi (Aspergillus californicus, Beauveria bassiana, Fusarium oxysporium, Metharizium flavoride, Cladosporium cladosporioides, Trichoderma viride and Verticillium alfalfae) against aphid insects: Metopolophium dirhodum. The selected entomopathogenic fungi were isolated from the agricultural soil of the National Institute of Plant Protection of Constantine, Algeria, and were tested against aphid insects that were gathered from the same area. The aphids were exposed to each fungal spore suspension (107 conidia/mL) for 10 seconds. The viability/mortality of the insects was evaluated on the 1st, 3rd, 5th, and 7th day after inoculation. After 7 days of inoculation, all the fungi species, except F. oxysporum, presented a significant effect (P < 0.05) against the studied aphid. The mortality rate was estimated between 21 and 96%. B. bassaian, C. cladosporioides and V. alfalfae presented the most potent effect on M. dirhudum with a percentage above 50% (95.83, 63.98 and 51.83%, respectively). A. californicus and M. flavoride showed the same effect: 41.97%. T. viride and F. oxysporium had the lowest effect with 31.44% and 20.83%, respectively. The inter/intra specificity of the fungi was mostly reported, besides other factors, as the modulator of their effectiveness. 

Keywords: Entomopathogenic fungi, M. dirhodum, mortality rate

References

  1. Abbott, W. S. (1925). A Method of computing the effectiveness of an insecticide. J. Econ. Entomol., 18, 265-267.
  2. Abdel-Baky, N. F. and A.H. Abdel-Salam (2003). Natural incidence of Cladosporium spp. as a bio-control agent against whiteflies and aphids in Egypt. J. Appl. Entomol., 127 (4), 228–235. 
  3. Abdel-Baky, N. F., Arafat, S. Nehal and A.H. Abdel-Salam (1998). Three Cladosporium spp. as promising biological control candidates for controlling whiteflies (Bemisia spp.) in Egypt. Pak. J. Biol. Sci., 1, 188-195.
  4. Barta, M. and L. Cagan (2006). Aphid-pathogenic Entomophthorales (their taxonomy, biology and ecology). Biologia, 61, 543-616.
  5. Bensaci, O. A., H. Daoud, N. Lombarkia and K. Rouabah (2015). Formulation of the endophytic fungus Cladosporium oxysporum Berk. & M.A. Curtis, isolated from Euphorbia bupleuroides subsp. luteola, as a new biocontrol tool against the black bean aphid (Aphis fabae Scop.). J. Plant Prot. Res. 55, 80-87.
  6. Blackman, R. L. and V. F. Eastop (2000). Aphids on the World’s Crops:  An Identification and Information Guide. John Wiley & Sons, Chichester, England, 476 pp.
  7. Burges, H. D. (1981). Safety, safety testing and quality control of microbial pesticides. In: Burges HD, editor. Microbial control of pests and plant diseases 1970-1980. London: Academic Press, pp. 737-767.
  8. Butt, T. M., L. Ibrahim, B.V. Ball and S. J. Clark (1994). Pathogenicity of the entomogenous fungi Metarhizium anisopliae and Beauveria bassiana against crucifer pests and the honey bee. Biocont. Sci. Technol., 4, 207-214.
  9. Carruthers, RI and Soper RS. 1987.  Fungal diseases. In Epizootiology of Insect Diseases, J. R. Fuxa and Y. Tanada, eds.; New York: John Wiley and Sons.
  10. Carter, N., I. F.G. McLean, A. D. Watt and A.F.G. Dixon (1980). Cereal aphids: a case study and review. In:  Coaker T.H. (ed.): Applied Biology. Acad. Press, London, 271–348.
  11. Chavan, B.P., J. R. Kadam and Y. S. Saindane (2008). Bioefficacy of liquid formulation of Verticillium lecanii against aphid (Aphis gossypii). Int. J. Plant Prot., 1(2), 69-72. 
  12. De Faria, M. R. and S. P. Wraight (2007). Mycoinsecticides and Mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol. Cont., 43, 237-256. 
  13. Dixon, A. F. G. (1987). Cereal aphids as an applied problem. Agric. Zool. Rev., 2 (1), 1−57.
  14. Ehrlich, K. C. (2014).  Non-aflatoxigenic Aspergillus flavus to prevent aflatoxin contamination in crops: advantages and limitations. Front Microbiol., 5, 50. 
  15. Freed, S., F. L. Jin, M. Naeem, S.X. Ren and M. Hussian (2012). Toxicity of proteins secreted by entomopathogenic fungi against Plutella xylostella (Lepidoptera: Plutellidae). Int. J. Agric. Biol., 14, 291-295. 
  16. Ganassi, S., A. Moretti, C. Stornelli, B. Fratello, A.M. Pagliai and A. Logrieco (2001). Effect of Fusarium, Paecilomyces and Trichoderma formulations against aphid Schizaphis graminum. Mycopathologia, 151, 131–138. 
  17. Gibbons, J. G. and A. Rokas (2012). The function and evolution of the Aspergillus genome. Trends Microbiol., 21, 14-22. 
  18. Gillespie, A.T. and   E. R. Moorhouse (1989). The Use of Fungi to Control Pest of Agricultural and Horticultural Importance. In: Biotechnology of Fungi for Improvement of Plant Growth. (Eds.: Whipps. et. al.). London: Cambridge University Press, pp. 55-84. 
  19. Glare, T., J. Caradus, W. Gelernter, T. Jackson, N. Keyhani, J. Köhl, P. Marrone, L. Morin  and A. Stewart (2012). Have biopesticides come of age? Trends Biotechnol., 30,  250–258.
  20. Guesmi-Jouini, J., N. Boughalleb-M´hamdi and M. Ben Halima-Kamel (2010). Etudes préliminaires sur les champignons entomopathogènes des pucerons de l’artichaut en Tunisie. Entomologie faunistique – Faunistic Entomology. 63 (3), 171-181.
  21. Han, B., H. Zhang and L. Cui (1997). Epizootic infection and spatial pattern within epizootic peak period of Cladosporium sp. to the population of Aleurocanthus spiniferus. Entomol. J. East China, 40, 66-70.
  22. Hesketh, H., P. G. Alderson, B. J. Pye and J. K. Pell (2008). The development and multiple uses of a standardized bioassay method to select hypocerealean fungi for biological control of aphids. Biol. Cont., 46, 242-255. 
  23. Hulden, L. (1986). The whiteflies (Homoptera, Aleyrododea) and their parasites in Finland. Notulae Entomol., 66, 1-40.
  24. Humber, R. A. (1991). Fungal pathogens of aphids,  pp. 45–56. In: Peters, D.C., Webster, J.A. & Chlouber, C.S. (eds). Aphid-plant interactions: Populations to molecules, Agricultural Experiment Station, Division of Agriculture, Oklahoma State University, Stillwater.
  25. Kim, J.J., J. Gayoung, J. H. Han and  S.Y. Lee (2013). Biological Control Aphids Using Fungal Culture and Culture filtrates of Beauveria  bassiana. Microbiol,   41, 221–224.
  26. Lacey, L.A. and  M. S. Goettel (1995). Current developments in microbial control of insect pests and prospects for the early 21st century.  Entomophaga. 40, 3-27. 
  27. Mburu,  D. M., L. Ochola, N. K. Maniania, P. G. N. Njagi,  L. M. Gitonga,  M.W. Ndung’u, A. K. Wanjoya and  A. Hassanali (2009).  Relationship between virulence and repellency of entomopathogenic  isolates of Metarhizium anisopliae and Beauveria bassiana  to the termite Macrotermes michaelseni. J. Insect Physiol., 55, 774-780.
  28. McCoy, C.W., R. A. Samson and D.G. Boucias (1988). Entomogenous Fungi. In: Handbook of Natural Pesticides: Microorganisms. (Eds.: Ignoffo et.al.). CRC Press, pp. 260.
  29. Meyling, N.V. and J. Eilenberg (2007). Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: potential for conservation biological control. Biol. Control, 43, 145-155.
  30. Milner, R. J. (1997).  Prospects for biopesticides for aphid control. Entomophaga, 42, 227–239.
  31. Murerwa, P., A. P. Futi,  K. A. Wanjiku and N. K. Maniania (2014). Effect of infection by Metarhizium anisopliae isolate ICIPE 51 on developmental stage, fecundity and intrinsic rate of increase of Rhopalosiphum padi and Metopolophium dirhodum. J. Entomol. Nematol., 6(11), 154-160 .
  32. Omar, A., I. Abdul-Wahid and S. M. Elbanna (2012). Evaluation of the insecticidal activity of Fusarium solani and Trichoderma harzianum against cockroaches; Periplaneta Americana. Afr. J. Microbiol. Res., 6(5), 1024-1032.
  33. Pan, W.Y., S. L. Chen, J. H. Lian, H. Z. Qiu and G. Lan (1989). A preliminary report on control of Hemiberlesia pitysophila using Cladosporium cladosporioides. For. Pest Dis., (3), 22-23.
  34. Rassipour, A., G. Radjabi and M. Esmaili (1996).  Part II – Country  Reports. Sunn Pests and Their Control in the Near East. 1996;   http://www.fao.org/docrep/v9976e/v9976e05.htm.
  35. Remaudière, G., J. P. Latge and M. F. Michel (1981).  Ecologie comparée des Entomophthoracées pathogènes de Pucerons en France littorale et continentale. Entomophaga, 26, 157-178.
  36. Roberts, D.W. and R. A.  Humber (1981).  Entomogenous Fungi. In: Biology of Conidial Fungi, Cole, G.T. and B. Kendrick (Eds.). Academic Press, New York, pp: 201-236.
  37. Saranya, S., R. Ushakumari, S. Jacob, Babu M. Philip (2008). Efficacy of different entomopathogenic fungi against cowpea aphid, Aphis craccivora (Koch). J. Biopest., 3 (1 Special Issue) 138 - 142.
  38. Seye, F., T. Bawin, S. Boukraa, J. Y. Zimmer, M. Ndiaye, F. Delvigne and F. Francis (2014). Effect of entomopathogenic Aspergillus strains against the pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae). Appl. Entomol. Zool., 49, 453–458.
  39. Shah, P. A. and J. K. Pell (2003). Enthompathogenic fungi as biological control agents. Appl. Microbiol. Biotechnol., 61, 413-423. 
  40. Tell, L. A. (2005). Aspergillosis in mammals and birds: impact onveterinary medicine. Med. Mycol., 43, S71–S73.
  41. Thumar, R. K. and M. N. Kapadia (1994).  Ovicidal control of Aleurolobus barodensis (Maskell) and its suppression by the entomopthogenic fungus. Indian Sugar, 44, 501-502.
  42. Won, W. L., Y. S. Tae, M. B. Sung and D. W. Soo (2015). Screening and evaluation of entomopathogenic fungi against the green peach aphid, Myzus persicae, using multiple tools. J.Asia-Pac. Entomol., 18, 607–615.
8

Dependence between the Rheological Properties of the Initial Raw Material and Whole Muscle Ham Products From Beef

Oksana Savinok

  |  DOI: 10.29329/ijiaar.2018.133.1

Manuscript Views: 28  |  Manuscript Download: 52

Abstract

The changes in the rheological characteristics of beef ham products were studied using a dynamic penetrometer with a cone angle of 10 ° and 30°. The ratios of the immersion depths of the cone of a dynamic penetrometer for different muscles (m.Semimembranosus and m. Longissimus dorsi) were calculated. When using different cones, the ratios varied depending on the content of the connective tissue in the meat, as well as in the process. Moreover, the more connective tissue in meat, the less the ratio of strength characteristics of meat along and across its fibers. The stage at which there was significant deterioration in the sensory indices was determined.

Keywords: Beef, dynamic penetrometer, rheological characteristics, ham products.

References

  1. Cherniavskiy, M.V. (2002). Anatomico-topographic foundations of technology, veterinary and sanitary expertise and commodity evaluation of slaughter products. M.: Kolos S, 376.
  2. Kakimov, A., Z. Yessimbekov, A. Bepeyeva, B. Kabulov and Z. Kakimova (2015). Consistency cone penetrometry for food products. Pak. J. Nutr., 14 (11), 837-840.
  3. Kosoy, V. D. and V. P. Dorohov (2006). Improving the production of sausages (theoretical foundations, processes, equipment, technology, formulations and quality control) M.: DeLi print, 72–99.
  4. Kosoy, V. D., A. D. Malyshev and S. B. Yudina (2005). Engineering rheology in the production of sausages M.: KolosS, 262.
  5. Migdał, W., B. Živković, A. Nowocień, I. Przeor, K. Palka, M. Natonek-Wiśniewska, D. Wojtysiak, M. Walczycka and I. Duda (2007). Chemical composition and texture parameters of loin from polish landrace fatteners slaughtered in different age. Biotechnol. Anim. Husbandry, 23 (5-6), 277– 282.
  6. Poldvere, А., L. Lepasalu, A. Tanavots, J. Olt, U. Sannik, A. Sats, R. Saar, R. Martinson and V. Poikalainen (2014). An alternative method for meat shear energy estimation during ageing. J. Agron. Res., 12(3), 793–800.
  7. Savinok, O. N. (2015). Rheometrik investigations of beef muscle tissue in different periods of autolysis. Maced. J. Anim. Sci., 5 (2), 101–105.
  8. Savinok, O. N. (2016). Improvement of the methods of calculation of rheological characteristics of resilient-elastic environments by the penetration method Maced. J. Anim. Sci., 6 (1), 59–64.
  9. Savinok, O.N., V.D. Kosoy, V.G. Garbuz (2014).  Choice of rational parameters for measuring the rheological characteristics of whole muscle tissue of beef by the penetration method Scientific Works ONAFT, Оdеssа, 46 (2), 160-164.
9

Influence of Maceration and the Addition of Flavoring Enzyme on the Aromatic Profile of Red Wines from the Region of Central Northern Bulgaria

Dimitar Dimitrov, Tatyana Yoncheva & Vanyo Haygarov

  |  DOI: 10.29329/ijiaar.2018.133.2

Manuscript Views: 20  |  Manuscript Download: 45

Abstract

Gas chromatographic study (GC-FID) for determination of the influence of maceration and addition of flavoring enzyme on the aromatic profile of red wines from Central Northern Bulgaria was conducted. The wines were obtained from selected clones (Gamza 52-9-4, Gamza 52-9-5 and Pamid 5/76) and varieties (Kaylashky rubin, Trapezitsa). Nineteen volatile compounds have been identified. Of these, 5 higher alcohols, 9 esters and 4 terpene alcohols  affected the aroma of the wines. Methyl alcohol has been found in wines. Its concentrations were normal for red wines. The highest total concentration of volatile compounds was found in the Gamza clone 52-9-5 control (363.10 mg/dm3). Gamza 52-9-4 clone, Kaylashky rubin and Trapezitsa varieties have been observed to increase the content of higher alcohols after addition of flavoring enzyme, while in the wines from Gamza 52-9-5 clone and Pamid 5/76 clone, the trend was reversed. The ester composition of the experimental samples was diverse. Increased ester content, after the addition of flavoring enzyme was found in Gamza 52-9-4 clone, Kaylashky rubin and Trapezitsa variety. In Gamza 52-9-5 and Pamid 5/76, the trend was reversed. The dominant ester was ethyl acetate. The highest content of terpene alcohols was observed in the wine from the control variant of clone Pamid 52-9-4 (0.69 mg/dm3).

Keywords: Maceration, Red wines, Enzyme, Aromatic profile, Methanol, Esters, Aldehydes, Higher alcohols, Terpenes.

References

  • Aznar, M., R. Lopez, J. F. Cacho and V. Ferreira (2001). Identification and quantification of impact odorants of aged red wines from Rioja. GC-Olfactometry, quantitative GC-MS, and odor evaluation of HPLC fractions.  J. Agric. Food Chem., 49, 2924-2929.  
  • Bell, S.J. and P. A. Henschke. (2005). Implications of nitrogen nutri¬tion for grapes, fermentation and wine. Aust. J. Grape Wine Res., 11, 242-295.
  • Chobanova, D. (2012). Enology. Part I: Composition of wine. Academic Press of University of Food Technologies, Plovdiv (BG).
  • Dignum, M. J. W., J. Kerler and R. Verpoorte (2001). β-Glucosidase and peroxidase stability in crude enzyme extracts from green beans of Vanilla planifolia Andrews. Phytochem. Analysis, 12(3), 174–179.
  • Ebeler, S. (2001). Analytical chemistry: Unlocking the secrets of wine flavor. Food Rev. Int., 17, 45–64.
  • Etievant, P.X. (1991). Volatile compounds of food and beverages. In: Maarse, H. (ed). Dekker, New York. p: 546.
  • Fenoll, J., A. Manso, P. Hellín, L. Ruiz and P. Flores. (2009). Changes in the aromatic composition of the Vitis vinifera grape Muscat Hamburg during ripening. Food Chem., 114, 420-428.
  • Guth, H. (1997). Quantitation and sensory studies of character impact odorants of different white varieties. J. Agric. Food Chem., 45, 3027–3032.
  • Ivanov, M. (2016). Hybridization in the vine selection. Academic Press of Agricultural University, Plovdiv, Bulgaria. (BG).
  • Ivanov, M., I. Simeonov and Z. Nakov (2012). Trapezitsa – new red wine grapevine variety. Agric. Sci., 45(1), 57-62.
  • Ivanova, V., M. Stefova, B. Vojnoski, T. Stafilov, I. Bíró, A. Bufa, A. Felinger and F. Kilár  (2013). Volatile Composition of Macedonian and Hungarian Wines Assessed by GC/MS. Food Bioprocess Technol., 6, 1609–1617.
  • Kobayashi, M., H. Shimizu and S. Shioya (2008). Beer volatile compounds and their application to low malt beer fermentation. J. Biosci. Bioeng. 106 (4), 317-323.
  • Lakatošová, J., L. Priesolová, I. Dokupilová and D. Šmogrovičová (2013). Characterisation of Slovak varietal wine aroma compounds by gas chromatography mass spectrometry. Potravinarstvо, 7, 180 – 182.
  • Lambrechts, M. G. and I. S. Pretorius (2000). Yeast and its importance to wine aroma - a review. S. Afr. J. Enol. Vitic, 21, Special Issue.
  • Lee, S. J. and A.C. Noble (2003). Characterization of odor-active com¬pounds in Californian Chardonnay wines using GC-olfactometry and GC-mass spectrometry. J. Agric. Food Chem., 51, 8036-8044.
  • Lengyel, E. (2012). Primary aromatic character of wines. Acta Universitatis Cibiniensis Series E: Food Technology. 16(1): 3–18.
  • Li, H. (2006). Wine tasting. China Science Press, Beijing, China.
  • Li, H., Y. S. Tao, H. Wang and L. Zhang (2008). Impact odorants of Chardonnay dry white wine from Changli County (China). Eur. Food Res. Technol., 227, 287–292.
  • Marinov, M. (2005). Technology of alcoholic beverages and spirits. Plovdiv, Bulgaria: Academic Publishing of University of food technologies. ISSN 0477-0250. (BG).
  • Marti, M.P., M. Mestres, C. Sala, O. Busto and J. Guasch. (2003). Solidphase microextraction and gas-chromatography olfactometry analysis of successively diluted samples. A new approach of the aroma extract dilution analysis applied to the characterization of wine aroma. J. Agric. Food Chem., 51, 7861–7865.
  • Mason, A. B. and J. P. Dufour (2000). Alcohol acetyltransferases and the significance of ester synthesis in yeast. Yeast, 16, 1287-1298.
  • Mateo, J. J. and M. Jiménez (2000). Monoterpenes in grape juice and wines. J. Chromatogr. A., 881, 557–567.
  • Nakov, Z., I. Simeonov and M. Ivanov (2011). Pamid clone 5/76 – new high productive clone. Agric. Sci., 44(6), 47-53.
  • Peinado, R. A., J. Moreno, J.E. Bueno, J.A. Moreno and J.C. Mauricio (2004). Comparative study ofaromatic compounds in two young white wines subjected to pre-fermentative cryomaceration. Food Chem., 84, 585–590.
  • Perestrelo, R., A. Fernandes, F.F. Alburquerque, J.C. Marques and J.S. Camara (2006). Analytical characterization of the aroma of Tinta Negra Mole red wine: Identifcation of the main odorants compounds. Anal. Chim. Acta, 563, 154-164.
  • Rapp, A. and H. Mandery (1986). Wine aroma. Experientia, 42, 873-884.
  • Sanchez Palomo, E., M.C. Diaz-Maroto, M.A. Gonzalez Viñas, A. Soriano-Pérez and M.S. Pérez-Coello. (2007).  Aroma  profile  of  wines  from  Albillo  and  Muscat  grape  varieties  at different stages of ripening. Food Chem., 18, 398-403.
  • Standard 3752:2005. Alcohol Drinks – Methods of Test (Second Revision).
  • Sumby, K. M., P. R. Grbin and V. Jiranek (2010). Microbial modulation of aromatic esters in wine: Current knowledge and future prospects. Food Chem., 121, 1–16.
  • Swiegers, J. H., E. J. Bartowsky, P.A. Henschke and I.S. Pretorius (2005a). Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res. 11, 139-173.
  • Tao, Y. and H. Li. (2009). Active volatiles of Cabernet Sauvignon wine from Changli County. Nat. Sci., 1, 176-182.
  • Velkov, E. (1996). Encyclopedia of alcoholic beverages. Plovdiv, Bulgaria: Poligrafia Ltd. 1996. ISBN 954-698-002-1. (BG).
  • Vilanova, M., Z. Genisheva, M. Graña, and J.M. Oliveira. (2013). Determination of odorants in varietal wines from international grape cultivars (Vitis vinifera) grown in NW Spain. S. Afr. J. Enol. Vitic, 34, 212-222.
  • Wang, Y., Y. Xu and J. Li. (2012). A novel extracellular b-glucosidase from Trichosporon asahii: Yield prediction, evaluation and application for aroma enhancement of Cabernet Sauvignon. J. Food Sci., 77(8), M505–M515.
  • Wilson, B., C.R. Strauss, and P.J. Williams. (1986). The distribution of free and glycosidically-bound monoterpenes among skin, juice, and pulp fractions of some white grape varieties. Am. J. Enol. Vitic, 37, 107-111.
  • Yankov, А. (1992) Winemaking Technology. Sofia, Zemizdat. 355 pp. (BG).
  • Yankov, A., S. Kukunov and T. Yankova (2000). Technology of wine and higher alcohol drinks. Publisher: Teodoros, Sofia, Bulgaria, p: 193 (BG).
  • Nakov, Z., M. Ivanov and I. Simeonov (2017). Comparative study of the yield and quality of selected cones of Gamza variety. J. Mt. Agric. Balk., 20(3), 355 – 362.
10

Milk quality and food practices in dairy cattlefarming in the semi-arid region of Setif

Mansour Lynda-Maya, K Cheniti & K. Abbes

  |  DOI: 10.29329/ijiaar.2018.133.5

Manuscript Views: 18  |  Manuscript Download: 44

Abstract

The purpose of this work was to bring out the diversity of milks produced in the semi-arid Algerian Setif area and link it to the practices of pastoralists mainly in the food sector. In 24 dairy farms, representing different feeding strategies, a breeding follow-up detailing the ways of driving cows was adopted. In parallel, a seasonal analysis of the physicochemical and microbiological characteristics of 144 mixed milk samples (6 samples per season /spring, summer/ and per farm during two passages) in 24 farms was carried out. Milk quality parameters were highly variable and generally satisfactory. The physicochemical composition of the milks could be described as average for the majority of the samples, and marked a remarkable normativity. The majority of the farm milk samples displayed average fat content compliant. It was below 35 g/l in only 21.52% of the samples and showed significant fluctuations during the summer season, ranging from 31 to 41.7 g/l. Seven farms had average contents of above 35g/l for both periods.  Variations in the butter fat between the different farms could be explained by the production and eating behavior strategies adopted by each farm. The protein content recorded in both seasons appeared much more stable than the fat content of all the milk collected. The average protein level for the 24 farms was 34.21g/kg. However, 8.33% of the milk samples in spring and 12.5% of those collected in summer had levels considered insufficient (less than 33g/kg). The microbiological results were highly variable with average counts of total aerobic mesophilic microflora exceeding the maximum standard of 105 CFU/ml. Hygienic quality was a concern for all milk samples despite the variety of situations. The typology of milk samples allowed to describe the diversity in milk quality based on variations in the levels of useful materials and fluctuations in total microflora.

Keywords: dairy cattle -raw milk - diversity -physicochemical quality-hygienic quality-typology

References

  1. Aagaard, K., L. Jepsen and H. Andersen (1998). Raw milk quality in Denmark. Scand, Dairy Inform, 3, 22-24. 
  2. Afif, A., M. Faid and M. Najimi (2008). Microbiological quality of raw milk produced in the Tadla region of Morocco. Reviews in Biology and Biotechnology. BioAlliance Canada-Morocco, 7, 2-7.
  3. AFNOR (1977). Determination of nitrogen for the purpose of calculating the crude protein content. AFNOR Edition, Paris, France.
  4. AFNOR (1985). Quality control of dairy products - physical and chemical analyses, 3rd edition (publishing): 107-121-125-167-251 (321 pages). 
  5. Agabriel, C., J. B. Coulon, G. Brunschwig, C. Sibra and C. Nafidi (1995). Relationship between the quality of milk delivered and the characteristics of the farms INRA Prod. Anim., 8, 251-258. 
  6. Aggad, H., F. Mahouz, Y. Ahmed Ammar and M. Kihal (2009). Evaluation of the hygienic quality of milk in western Algeria. Med. Vet. Rev., 160 (12), 590-595. 
  7. Alais, C. and G. Linden (2004). Food biochemistry. 5th Edition Masson (Paris), 520 p., 162-164.
  8. Alais, C. (1984). Milk science. Principles of dairy techniques. 3rd edition, Advertising edition France.
  9. Ameur, A., K. Rahal and A. Bouyoucef (2011). Evaluation of the cleaning of refrigeration tanks on dairy farms in the Freha region (Algeria). Nature & Technology, 6, 80-84.
  10. Araba, A. (2006). Feeding of the dairy cow. Technology transfer in agriculture. Bulletin produced at the agronomic and veterinary institute Hassan II, Rabat. N°136. 
  11. Bassbasi, M., A, Hirri and A. Oussama (2013). Physico-chemical characterization of raw milk in the Tadla-Kelaa region of Morocco: Application of the exploratory analysis. Int. J. Innov. Appl. Stud., 2 (4) 512-517. 
  12. Bonfoh, B., A. Fané,  N. A. Traoré, Z. Coulibaly, C. F. Simbé, O. Alfaroukh, J. Nicolet, Z. Farah and J. Zinsstag (2002). Microbiological quality of milk and dairy products sold in the hot season in the Bamako district of Mali. Bioterre, Rev. Inter.Sci. of life and earth, N ° special acts of the international symposium, center Switzerland. University Publishing of Ivory Coast, pp: 242-250
  13. Bony, J., V. Contamin, M. Gousseff, J. Metais, E. Tillard, X. Juanes, V. Decruyenaere and J. B. Coulon (2005). Factors of variation of milk composition in Réunion. INRA Prod. Anim., 18, 255-263.
  14. Coulon, J., C. Hurtaud, R. Romond and R. Verite (1998). Factor of variation of the proportion of casein in cow's milk proteins. INRA Prod. Animal., 1, 299-310.
  15. Coulon, J. P. and B.  Remond (1991). Responses of cow's milk production and composition to changes in nutrient intake. INRA Prod.Anim., 4, 49-56. 
  16. Dagnelie, P. (1975). Theory and statistical methods. Edition: Flammarion, 378,113-135.
  17. Desmasures, N., F. Bazin and M. Guéguen (1997). Microbiological composition of raw milk in the Camembert region of Normandy, J. Appl. Microbiol., 83, 53-58.
  18. Faye, B. and G. Loiseau (2000). Sources of contamination in dairy value chains and example of quality approaches in: Food safety management in developing countries, CIRAD-FAO edition, 1-5.
  19. Gaursaude, J. (1985). Composition and physico-chemical property of milk. In: Milk and milk products, sheep cow, goat. Vol.1, Milk from the udder to the dairy, Luquet, F.M., Edition INRA, pp. 520-530.
  20. Ghazi, K., B. Guessas, A. Niar and K.I. Louacini (2010).  Hygienic quality of cow milk, in various bovine breeds of Tiaret Area (Algeria). Asian J. Anim. Vet. Adv., 5(8), 592-596. 
  21. Guetarni, D. (2006). Strategy for improving quality and quantity of raw milk in Algeria. Proc.  Scientific days on dairy production. Tiaret, Algeria, pp: 26-43.
  22. Guiraud, J. (1998). Food Microbiology, DUNOD Edition, 79-102.
  23. Guiraud, J. P. and J. P. Rose (2004). Practice of food microbiology standards AFNOR, 300p.
  24. Hoden, A., J. B. Coulon and P. Faverdin (1988). Feeding cattle, sheep and goats. In: Jarrige, R. (Ed.), INRA, Paris, France, 135-158.
  25. Hogan,  J. S.,  K. H. Hoblet, K. L. Smith,  D. A. Todhunter,  P. S. Schoenberger, W.D. Hueston, D. E. Pritchard, G. L. Bowman, L. E. Heider and B. L. Brockett (1988). Bacterial and somatic cell counts in bulk tank milk from nine well managed herds. J. Food Prot., 51, 930-934.
  26. Joffin, C. and J. N. Joffin (1999). Food microbiology. Collection biology and technique 5th edition, 174.
  27. JORA (1998). INTERIM Ministerial Order of 25 January 1998 (JORA) on the microbiological specifications of certain foods. Department of Commerce. JORA No. 35, 1998, Algeria.
  28. Kacimi El Hassani, S. (2013). Food dependence in Algeria: import of milk powder versus local production, what evolution? Mediterr. J. Soc. Sci., 4 (11), 152-158.
  29. Karimuribo, E. D., L. J. Kusiluka, R. H. Mdegela, A. M. Kapaga, C. Sindato and D.M. Kambarage (2005). Studies on mastitis, milk quality and health risks associated with consumption of mil from pastoral herds in Dodoma and Morogoro regions, Tanzania. J. Vet. Sci., 6, 213–221.
  30. Labioui, H., L. Elmoualdi, A. Benzakour, El Yachioui, E. Berny and M. Ouhssine (2009). Physicochemical and microbiological study of raw milks. Bull. Soc. Pharm. Bordeaux, 148, 7-16. 
  31. Luquet, F. M. (1985). Milk and dairy products (cow, ewe, goat). Volume 1: Milks from the udder to the dairy. Technical and documentation Lavoisier, 217-261
  32. Madani, T. and C. Mouffok (2008). Dairy production and breeding performance of Montbéliarde cows in the Algerian semi-arid region. Elev Review. Med.Vet. Country Trop., 61 (2), 97-107.
  33. Makhlouf, M., E. Montaigne and A. Tessa (2015). Algerian dairy policy: between food security and differential support for consumption. New Medit.,1, 12-23. 
  34. Makhlouf, M., E. Etienne Montaigne (2017). Impact of the new Algerian dairy policy on the viability of dairy farms. New Medit, 1, 2-10.
  35. Mansour, L. M. and K. Abbas (2015). Typology of feeding strategies for dairy cattle in the semi-arid region of Sétif. Livest. Res. Rural Dev., 27, http://www.lrrd.org/lrrd27/5/abba27085.html.
  36. Mathieu, J. (1998). Initiation to the physicochemistry of milk. Technological Guides of LPNs. Edition Lavoisier Tec and Doc, Paris, 220 p.
  37. Maury, M. (1987). Medias and laboratory reagents. Microbiol. Immunol. Pasteur Diagnosis, pp: 727.
  38. Mennane, Z., M. Ouhssine, K. Khedid and M. Elyachioui (2007). Hygienic quality of raw cow’s milk feeding from waste in two regions in Morocco. Int. J. Agric. Biol., 9, 46-48. 
  39. Michelle, V., A. Hauwuy and J. F. Chamba (2001). The microbial flora of raw cow milks: diversity and influence of the conditions of production. Milk, 81, 575-592. 
  40. Ramet, J. P. (1985). The cheese dairy and the cheese varieties of the Mediterranean basin. FAO Animal Production and Health Study, 48. 
  41. Schwartz, D. (1992). Statistical methods for use by physicians and biologists. Flammarion Edition, Paris, 306 p.
  42. Srairi, M. T., I. Hasni Alaoui, A. Hamama and B. Faye (2005). Relationship between breeding practice and overall quality of cow's milk in suburban barns in Morocco. Med. Rev. Vet., 156, 155-162.
  43. Srairi, M. T. and A. Hamama (2006). Overall quality of raw cow milk in Morocco concept, state of play and prospects for improvement. Technology transfer in agriculture. Bulletin made at the agronomic and veterinary institute Hassan II. Rabat, N 137. 
  44. Stoll, W. (2002). Feeding of the dairy cow and composition of the milk. Federal Research Station for Animal Production. http/www.admin.ch/sar/2ap. N°8.
  45. Sutton, J. D. (1989). Altering milk composition by feeding. J. Dairy Sci., 72, 2801-2814.